L(s) = 1 | − 4i·5-s + (−3 + 2i)13-s + 2·17-s − 11·25-s − 10·29-s + 12i·37-s − 8i·41-s + 7·49-s − 14·53-s − 10·61-s + (8 + 12i)65-s − 16i·73-s − 8i·85-s + 16i·89-s + 8i·97-s + ⋯ |
L(s) = 1 | − 1.78i·5-s + (−0.832 + 0.554i)13-s + 0.485·17-s − 2.20·25-s − 1.85·29-s + 1.97i·37-s − 1.24i·41-s + 49-s − 1.92·53-s − 1.28·61-s + (0.992 + 1.48i)65-s − 1.87i·73-s − 0.867i·85-s + 1.69i·89-s + 0.812i·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3 - 2i)T \) |
good | 5 | \( 1 + 4iT - 5T^{2} \) |
| 7 | \( 1 - 7T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 10T + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 - 12iT - 37T^{2} \) |
| 41 | \( 1 + 8iT - 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 14T + 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 16iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 - 16iT - 89T^{2} \) |
| 97 | \( 1 - 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.973832741044919213494427292927, −7.57087221163524274035714087100, −6.47969997481039407164373511739, −5.56776528716580331474882766751, −4.98250105396219012433013251598, −4.36913661305886093985718531011, −3.45790316511305003191858201870, −2.09023021001683883419116091656, −1.26214535222265802680455156179, 0,
1.87648676244566357541774297229, 2.77348086636941653821329988722, 3.38347913481718259752106087415, 4.27532854977663050671091326032, 5.50262499783384054777244257763, 6.00867871883172260252049158466, 6.94345609829164421040776940499, 7.47349600087989102088205715604, 7.920250557861090988000720899088