Properties

Label 2-3744-13.12-c1-0-44
Degree $2$
Conductor $3744$
Sign $i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.60i·7-s + 6.60i·11-s − 3.60·13-s − 7.21·17-s + 1.39i·19-s + 5·25-s + 7.21·29-s − 10.6i·31-s − 5.39i·47-s + 0.211·49-s + 2·53-s − 11.8i·59-s + 6·61-s − 14.6i·67-s − 15.8i·71-s + ⋯
L(s)  = 1  − 0.984i·7-s + 1.99i·11-s − 1.00·13-s − 1.74·17-s + 0.319i·19-s + 25-s + 1.33·29-s − 1.90i·31-s − 0.786i·47-s + 0.0301·49-s + 0.274·53-s − 1.53i·59-s + 0.768·61-s − 1.78i·67-s − 1.87i·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (3457, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.098401420\)
\(L(\frac12)\) \(\approx\) \(1.098401420\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + 3.60T \)
good5 \( 1 - 5T^{2} \)
7 \( 1 + 2.60iT - 7T^{2} \)
11 \( 1 - 6.60iT - 11T^{2} \)
17 \( 1 + 7.21T + 17T^{2} \)
19 \( 1 - 1.39iT - 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 7.21T + 29T^{2} \)
31 \( 1 + 10.6iT - 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 5.39iT - 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 + 11.8iT - 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 14.6iT - 67T^{2} \)
71 \( 1 + 15.8iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 3.81iT - 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.188714410022765953348898517419, −7.46687973426303549897576943307, −6.91211612798683437875753461131, −6.40338724760419898388595810205, −4.93669865433510563417066547880, −4.61034845843340959257084786086, −3.90150650028817211998177541828, −2.52576631237108973117886350179, −1.88677364854305106408275258683, −0.35327816287155092958314919044, 1.04491903159100579149462532736, 2.64351768618998015962007007946, 2.83171472885535519983873340301, 4.15532604203154359013918325815, 5.05208776354983522619073681004, 5.64847975517670532648088371738, 6.55210619196176382595558219291, 7.01177430795672550093713925931, 8.297620885046749219286082070497, 8.730348733941722924493114525274

Graph of the $Z$-function along the critical line