L(s) = 1 | − 2.60i·7-s + 6.60i·11-s − 3.60·13-s − 7.21·17-s + 1.39i·19-s + 5·25-s + 7.21·29-s − 10.6i·31-s − 5.39i·47-s + 0.211·49-s + 2·53-s − 11.8i·59-s + 6·61-s − 14.6i·67-s − 15.8i·71-s + ⋯ |
L(s) = 1 | − 0.984i·7-s + 1.99i·11-s − 1.00·13-s − 1.74·17-s + 0.319i·19-s + 25-s + 1.33·29-s − 1.90i·31-s − 0.786i·47-s + 0.0301·49-s + 0.274·53-s − 1.53i·59-s + 0.768·61-s − 1.78i·67-s − 1.87i·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.098401420\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.098401420\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + 3.60T \) |
good | 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + 2.60iT - 7T^{2} \) |
| 11 | \( 1 - 6.60iT - 11T^{2} \) |
| 17 | \( 1 + 7.21T + 17T^{2} \) |
| 19 | \( 1 - 1.39iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 7.21T + 29T^{2} \) |
| 31 | \( 1 + 10.6iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + 5.39iT - 47T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + 11.8iT - 59T^{2} \) |
| 61 | \( 1 - 6T + 61T^{2} \) |
| 67 | \( 1 + 14.6iT - 67T^{2} \) |
| 71 | \( 1 + 15.8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 3.81iT - 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.188714410022765953348898517419, −7.46687973426303549897576943307, −6.91211612798683437875753461131, −6.40338724760419898388595810205, −4.93669865433510563417066547880, −4.61034845843340959257084786086, −3.90150650028817211998177541828, −2.52576631237108973117886350179, −1.88677364854305106408275258683, −0.35327816287155092958314919044,
1.04491903159100579149462532736, 2.64351768618998015962007007946, 2.83171472885535519983873340301, 4.15532604203154359013918325815, 5.05208776354983522619073681004, 5.64847975517670532648088371738, 6.55210619196176382595558219291, 7.01177430795672550093713925931, 8.297620885046749219286082070497, 8.730348733941722924493114525274