L(s) = 1 | − 2.60i·7-s + 6.60i·11-s − 3.60·13-s − 7.21·17-s + 1.39i·19-s + 5·25-s + 7.21·29-s − 10.6i·31-s − 5.39i·47-s + 0.211·49-s + 2·53-s − 11.8i·59-s + 6·61-s − 14.6i·67-s − 15.8i·71-s + ⋯ |
L(s) = 1 | − 0.984i·7-s + 1.99i·11-s − 1.00·13-s − 1.74·17-s + 0.319i·19-s + 25-s + 1.33·29-s − 1.90i·31-s − 0.786i·47-s + 0.0301·49-s + 0.274·53-s − 1.53i·59-s + 0.768·61-s − 1.78i·67-s − 1.87i·71-s + ⋯ |
Λ(s)=(=(3744s/2ΓC(s)L(s)iΛ(2−s)
Λ(s)=(=(3744s/2ΓC(s+1/2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
3744
= 25⋅32⋅13
|
Sign: |
i
|
Analytic conductor: |
29.8959 |
Root analytic conductor: |
5.46772 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3744(3457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3744, ( :1/2), i)
|
Particular Values
L(1) |
≈ |
1.098401420 |
L(21) |
≈ |
1.098401420 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+3.60T |
good | 5 | 1−5T2 |
| 7 | 1+2.60iT−7T2 |
| 11 | 1−6.60iT−11T2 |
| 17 | 1+7.21T+17T2 |
| 19 | 1−1.39iT−19T2 |
| 23 | 1+23T2 |
| 29 | 1−7.21T+29T2 |
| 31 | 1+10.6iT−31T2 |
| 37 | 1−37T2 |
| 41 | 1−41T2 |
| 43 | 1+43T2 |
| 47 | 1+5.39iT−47T2 |
| 53 | 1−2T+53T2 |
| 59 | 1+11.8iT−59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+14.6iT−67T2 |
| 71 | 1+15.8iT−71T2 |
| 73 | 1−73T2 |
| 79 | 1+79T2 |
| 83 | 1+3.81iT−83T2 |
| 89 | 1−89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.188714410022765953348898517419, −7.46687973426303549897576943307, −6.91211612798683437875753461131, −6.40338724760419898388595810205, −4.93669865433510563417066547880, −4.61034845843340959257084786086, −3.90150650028817211998177541828, −2.52576631237108973117886350179, −1.88677364854305106408275258683, −0.35327816287155092958314919044,
1.04491903159100579149462532736, 2.64351768618998015962007007946, 2.83171472885535519983873340301, 4.15532604203154359013918325815, 5.05208776354983522619073681004, 5.64847975517670532648088371738, 6.55210619196176382595558219291, 7.01177430795672550093713925931, 8.297620885046749219286082070497, 8.730348733941722924493114525274