Properties

Label 2-3744-8.5-c1-0-8
Degree $2$
Conductor $3744$
Sign $-0.880 - 0.474i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s + 0.146·7-s + 2.68i·11-s + i·13-s − 17-s − 4i·19-s − 6.68·23-s + 4·25-s + 4.39i·29-s − 1.31·31-s + 0.146i·35-s + 3.97i·37-s + 6.39·41-s + 6.83i·43-s − 7.12·47-s + ⋯
L(s)  = 1  + 0.447i·5-s + 0.0553·7-s + 0.809i·11-s + 0.277i·13-s − 0.242·17-s − 0.917i·19-s − 1.39·23-s + 0.800·25-s + 0.815i·29-s − 0.236·31-s + 0.0247i·35-s + 0.654i·37-s + 0.998·41-s + 1.04i·43-s − 1.03·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.880 - 0.474i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.880 - 0.474i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.880 - 0.474i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (1873, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.880 - 0.474i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8242197465\)
\(L(\frac12)\) \(\approx\) \(0.8242197465\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - iT \)
good5 \( 1 - iT - 5T^{2} \)
7 \( 1 - 0.146T + 7T^{2} \)
11 \( 1 - 2.68iT - 11T^{2} \)
17 \( 1 + T + 17T^{2} \)
19 \( 1 + 4iT - 19T^{2} \)
23 \( 1 + 6.68T + 23T^{2} \)
29 \( 1 - 4.39iT - 29T^{2} \)
31 \( 1 + 1.31T + 31T^{2} \)
37 \( 1 - 3.97iT - 37T^{2} \)
41 \( 1 - 6.39T + 41T^{2} \)
43 \( 1 - 6.83iT - 43T^{2} \)
47 \( 1 + 7.12T + 47T^{2} \)
53 \( 1 - 8.97iT - 53T^{2} \)
59 \( 1 + 12.3iT - 59T^{2} \)
61 \( 1 - 8.35iT - 61T^{2} \)
67 \( 1 + 8.29iT - 67T^{2} \)
71 \( 1 - 5.51T + 71T^{2} \)
73 \( 1 + 6.97T + 73T^{2} \)
79 \( 1 + 15.0T + 79T^{2} \)
83 \( 1 - 4.29iT - 83T^{2} \)
89 \( 1 - 5.37T + 89T^{2} \)
97 \( 1 + 10.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.828047687063215560238541461735, −8.044345249793144742701000666309, −7.27213144617943707343036344744, −6.67763328739481918733274049510, −5.98530788204705242714317555993, −4.88009162144863544674267465057, −4.38722828708121773019071104337, −3.28468885753482482673067769556, −2.45375308120817373834943553929, −1.44971409191930854418619805479, 0.23620846614811677351106738692, 1.48892661283108289942182518434, 2.55871829757356654432196465352, 3.62745367643352499401562917504, 4.27832328279734165301127903110, 5.32070897237411174092760298261, 5.88772294076835178532504478581, 6.63255007738218567187327687126, 7.65736277625808939025577319397, 8.230214611412597880447749712724

Graph of the $Z$-function along the critical line