L(s) = 1 | − 2.52i·5-s − 2.79·7-s + 5.31i·11-s − i·13-s + 4.35·17-s − 6.02i·19-s + 0.568·23-s − 1.35·25-s − 2.68i·29-s − 1.90·31-s + 7.04i·35-s − 9.60i·37-s − 11.2·41-s + 9.48i·43-s + 3.95·47-s + ⋯ |
L(s) = 1 | − 1.12i·5-s − 1.05·7-s + 1.60i·11-s − 0.277i·13-s + 1.05·17-s − 1.38i·19-s + 0.118·23-s − 0.270·25-s − 0.499i·29-s − 0.342·31-s + 1.19i·35-s − 1.57i·37-s − 1.75·41-s + 1.44i·43-s + 0.577·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 + 0.156i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.987 + 0.156i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5422126905\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5422126905\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 2.52iT - 5T^{2} \) |
| 7 | \( 1 + 2.79T + 7T^{2} \) |
| 11 | \( 1 - 5.31iT - 11T^{2} \) |
| 17 | \( 1 - 4.35T + 17T^{2} \) |
| 19 | \( 1 + 6.02iT - 19T^{2} \) |
| 23 | \( 1 - 0.568T + 23T^{2} \) |
| 29 | \( 1 + 2.68iT - 29T^{2} \) |
| 31 | \( 1 + 1.90T + 31T^{2} \) |
| 37 | \( 1 + 9.60iT - 37T^{2} \) |
| 41 | \( 1 + 11.2T + 41T^{2} \) |
| 43 | \( 1 - 9.48iT - 43T^{2} \) |
| 47 | \( 1 - 3.95T + 47T^{2} \) |
| 53 | \( 1 - 8.05iT - 53T^{2} \) |
| 59 | \( 1 + 6.19iT - 59T^{2} \) |
| 61 | \( 1 + 7.23iT - 61T^{2} \) |
| 67 | \( 1 + 10.0iT - 67T^{2} \) |
| 71 | \( 1 + 1.63T + 71T^{2} \) |
| 73 | \( 1 + 5.17T + 73T^{2} \) |
| 79 | \( 1 + 9.17T + 79T^{2} \) |
| 83 | \( 1 + 4.61iT - 83T^{2} \) |
| 89 | \( 1 + 11.4T + 89T^{2} \) |
| 97 | \( 1 + 10.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.165480099688348503597171617494, −7.38466173057953135671159673471, −6.79212688395893359189991459098, −5.85686445894700272126535210597, −5.01805962004054860256934829372, −4.50216346798755621775090876753, −3.49064573154516254471347525658, −2.52430395943699002994995028015, −1.37880267823240858185578209868, −0.16435549540283927286501495587,
1.37355942013110525923960914170, 2.86646952246966347485293029557, 3.29064865990239187298910320417, 3.90487179012990344169456360644, 5.45700699615690825701296259470, 5.89421754123455833325203447061, 6.71593136024029837585816703679, 7.16016050223562233481408776038, 8.254356898665954329567215583141, 8.687868304573562412102020361409