Properties

Label 2-3744-8.5-c1-0-6
Degree $2$
Conductor $3744$
Sign $-0.621 + 0.783i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.31i·5-s − 4.17·7-s + 5.67i·11-s i·13-s + 1.15·17-s + 7.00i·19-s − 5.89·23-s − 5.98·25-s − 1.07i·29-s − 3.76·31-s − 13.8i·35-s + 1.08i·37-s + 4.24·41-s + 4.23i·43-s + 1.13·47-s + ⋯
L(s)  = 1  + 1.48i·5-s − 1.57·7-s + 1.71i·11-s − 0.277i·13-s + 0.278·17-s + 1.60i·19-s − 1.22·23-s − 1.19·25-s − 0.199i·29-s − 0.677·31-s − 2.34i·35-s + 0.178i·37-s + 0.662·41-s + 0.646i·43-s + 0.165·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.621 + 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.621 + 0.783i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (1873, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.621 + 0.783i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5503715174\)
\(L(\frac12)\) \(\approx\) \(0.5503715174\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 - 3.31iT - 5T^{2} \)
7 \( 1 + 4.17T + 7T^{2} \)
11 \( 1 - 5.67iT - 11T^{2} \)
17 \( 1 - 1.15T + 17T^{2} \)
19 \( 1 - 7.00iT - 19T^{2} \)
23 \( 1 + 5.89T + 23T^{2} \)
29 \( 1 + 1.07iT - 29T^{2} \)
31 \( 1 + 3.76T + 31T^{2} \)
37 \( 1 - 1.08iT - 37T^{2} \)
41 \( 1 - 4.24T + 41T^{2} \)
43 \( 1 - 4.23iT - 43T^{2} \)
47 \( 1 - 1.13T + 47T^{2} \)
53 \( 1 - 8.20iT - 53T^{2} \)
59 \( 1 + 8.89iT - 59T^{2} \)
61 \( 1 + 1.74iT - 61T^{2} \)
67 \( 1 + 10.5iT - 67T^{2} \)
71 \( 1 - 7.50T + 71T^{2} \)
73 \( 1 + 5.05T + 73T^{2} \)
79 \( 1 - 12.6T + 79T^{2} \)
83 \( 1 - 7.03iT - 83T^{2} \)
89 \( 1 - 10.0T + 89T^{2} \)
97 \( 1 + 5.44T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.372433604642288720848810067549, −7.83683338290748890572875043559, −7.58292004396600723913361700498, −6.52891873340030949388777603727, −6.39811768775256637811813365349, −5.44219412841876130628106505968, −4.09705118464173252161301285365, −3.54804392462398926887780535011, −2.70889753505689209688327947524, −1.87837356456569113079547302474, 0.19199743655628374169696922445, 0.923697689349561300239674471997, 2.44273635747056585371158768677, 3.43118206985040343083379487159, 4.07579689511991014302640473393, 5.13919536448391237399254614383, 5.79592911514386060488919637088, 6.40085547521867468503882138934, 7.29056227532792876676615670772, 8.283231875968830708664670235782

Graph of the $Z$-function along the critical line