Properties

Label 2-3744-8.5-c1-0-52
Degree $2$
Conductor $3744$
Sign $-0.771 + 0.636i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.06i·5-s + 1.53·7-s + 4.08i·11-s i·13-s − 4.47·17-s + 2.68i·19-s − 3.24·23-s − 4.39·25-s − 8.41i·29-s + 5.14·31-s − 4.71i·35-s − 5.60i·37-s + 5.34·41-s − 8.91i·43-s − 10.6·47-s + ⋯
L(s)  = 1  − 1.37i·5-s + 0.581·7-s + 1.23i·11-s − 0.277i·13-s − 1.08·17-s + 0.615i·19-s − 0.676·23-s − 0.878·25-s − 1.56i·29-s + 0.924·31-s − 0.797i·35-s − 0.921i·37-s + 0.834·41-s − 1.35i·43-s − 1.54·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.771 + 0.636i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.771 + 0.636i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.771 + 0.636i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (1873, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.771 + 0.636i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.150347462\)
\(L(\frac12)\) \(\approx\) \(1.150347462\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 + 3.06iT - 5T^{2} \)
7 \( 1 - 1.53T + 7T^{2} \)
11 \( 1 - 4.08iT - 11T^{2} \)
17 \( 1 + 4.47T + 17T^{2} \)
19 \( 1 - 2.68iT - 19T^{2} \)
23 \( 1 + 3.24T + 23T^{2} \)
29 \( 1 + 8.41iT - 29T^{2} \)
31 \( 1 - 5.14T + 31T^{2} \)
37 \( 1 + 5.60iT - 37T^{2} \)
41 \( 1 - 5.34T + 41T^{2} \)
43 \( 1 + 8.91iT - 43T^{2} \)
47 \( 1 + 10.6T + 47T^{2} \)
53 \( 1 + 2.48iT - 53T^{2} \)
59 \( 1 + 3.09iT - 59T^{2} \)
61 \( 1 + 8.47iT - 61T^{2} \)
67 \( 1 + 9.32iT - 67T^{2} \)
71 \( 1 + 7.52T + 71T^{2} \)
73 \( 1 + 5.60T + 73T^{2} \)
79 \( 1 - 11.3T + 79T^{2} \)
83 \( 1 + 4.46iT - 83T^{2} \)
89 \( 1 + 5.90T + 89T^{2} \)
97 \( 1 - 14.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.059787113780820607902956275423, −7.85559531047656295845839495607, −6.72291722202656633293875274089, −5.91256132818113923165617456508, −4.97633726406801918411397526290, −4.55622241237596130743152014767, −3.84727722686616670382697435377, −2.27582953554115907560369318999, −1.65124187011667179333836275057, −0.32838887142642900224533563977, 1.37570950629206497724266990606, 2.64213224000829654663123685424, 3.11923206933633767867149966862, 4.18572465219504674507050892946, 4.99574827928459473425352516664, 6.07855705507035449880619408646, 6.55408258076256985940007440544, 7.21760983398875895470936675148, 8.124147488424957566726518210353, 8.654616647422071098588328123125

Graph of the $Z$-function along the critical line