L(s) = 1 | − 0.592i·5-s − 3.54·7-s + 2.11i·11-s − i·13-s − 1.91·17-s + 2.26i·19-s − 1.43·23-s + 4.64·25-s − 0.214i·29-s − 1.97·31-s + 2.10i·35-s − 3.57i·37-s − 0.377·41-s + 0.319i·43-s + 9.40·47-s + ⋯ |
L(s) = 1 | − 0.264i·5-s − 1.34·7-s + 0.637i·11-s − 0.277i·13-s − 0.463·17-s + 0.518i·19-s − 0.299·23-s + 0.929·25-s − 0.0399i·29-s − 0.355·31-s + 0.355i·35-s − 0.587i·37-s − 0.0589·41-s + 0.0486i·43-s + 1.37·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 + 0.645i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.763 + 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.218262987\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.218262987\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + iT \) |
good | 5 | \( 1 + 0.592iT - 5T^{2} \) |
| 7 | \( 1 + 3.54T + 7T^{2} \) |
| 11 | \( 1 - 2.11iT - 11T^{2} \) |
| 17 | \( 1 + 1.91T + 17T^{2} \) |
| 19 | \( 1 - 2.26iT - 19T^{2} \) |
| 23 | \( 1 + 1.43T + 23T^{2} \) |
| 29 | \( 1 + 0.214iT - 29T^{2} \) |
| 31 | \( 1 + 1.97T + 31T^{2} \) |
| 37 | \( 1 + 3.57iT - 37T^{2} \) |
| 41 | \( 1 + 0.377T + 41T^{2} \) |
| 43 | \( 1 - 0.319iT - 43T^{2} \) |
| 47 | \( 1 - 9.40T + 47T^{2} \) |
| 53 | \( 1 + 9.40iT - 53T^{2} \) |
| 59 | \( 1 - 2.37iT - 59T^{2} \) |
| 61 | \( 1 - 10.7iT - 61T^{2} \) |
| 67 | \( 1 + 6.49iT - 67T^{2} \) |
| 71 | \( 1 - 11.0T + 71T^{2} \) |
| 73 | \( 1 + 3.57T + 73T^{2} \) |
| 79 | \( 1 + 4.55T + 79T^{2} \) |
| 83 | \( 1 + 11.3iT - 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 - 10.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.590076450721900095786551936980, −7.56573029219509882177223081100, −6.96328658007001145481532801154, −6.22752785131258743463874276754, −5.52758112653838570936860148435, −4.57101578870649245497671745451, −3.75266310760009580430077772796, −2.93397168849234229296313183357, −1.93946223746560294761572744775, −0.50331913039915313525533151143,
0.77291279307250827121090614609, 2.31816974988674510610027321892, 3.11233636152363740009145201238, 3.81217780312528192505641464161, 4.80099075538725038233524914718, 5.77096868666143806399347314917, 6.48375384300074894731088333796, 6.92055068168873206000867447245, 7.81459001636716789002298772471, 8.800623520884090510989938261672