Properties

Label 2-3744-8.5-c1-0-28
Degree $2$
Conductor $3744$
Sign $0.763 + 0.645i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.592i·5-s − 3.54·7-s + 2.11i·11-s i·13-s − 1.91·17-s + 2.26i·19-s − 1.43·23-s + 4.64·25-s − 0.214i·29-s − 1.97·31-s + 2.10i·35-s − 3.57i·37-s − 0.377·41-s + 0.319i·43-s + 9.40·47-s + ⋯
L(s)  = 1  − 0.264i·5-s − 1.34·7-s + 0.637i·11-s − 0.277i·13-s − 0.463·17-s + 0.518i·19-s − 0.299·23-s + 0.929·25-s − 0.0399i·29-s − 0.355·31-s + 0.355i·35-s − 0.587i·37-s − 0.0589·41-s + 0.0486i·43-s + 1.37·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 + 0.645i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.763 + 0.645i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $0.763 + 0.645i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (1873, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ 0.763 + 0.645i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.218262987\)
\(L(\frac12)\) \(\approx\) \(1.218262987\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 + 0.592iT - 5T^{2} \)
7 \( 1 + 3.54T + 7T^{2} \)
11 \( 1 - 2.11iT - 11T^{2} \)
17 \( 1 + 1.91T + 17T^{2} \)
19 \( 1 - 2.26iT - 19T^{2} \)
23 \( 1 + 1.43T + 23T^{2} \)
29 \( 1 + 0.214iT - 29T^{2} \)
31 \( 1 + 1.97T + 31T^{2} \)
37 \( 1 + 3.57iT - 37T^{2} \)
41 \( 1 + 0.377T + 41T^{2} \)
43 \( 1 - 0.319iT - 43T^{2} \)
47 \( 1 - 9.40T + 47T^{2} \)
53 \( 1 + 9.40iT - 53T^{2} \)
59 \( 1 - 2.37iT - 59T^{2} \)
61 \( 1 - 10.7iT - 61T^{2} \)
67 \( 1 + 6.49iT - 67T^{2} \)
71 \( 1 - 11.0T + 71T^{2} \)
73 \( 1 + 3.57T + 73T^{2} \)
79 \( 1 + 4.55T + 79T^{2} \)
83 \( 1 + 11.3iT - 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.590076450721900095786551936980, −7.56573029219509882177223081100, −6.96328658007001145481532801154, −6.22752785131258743463874276754, −5.52758112653838570936860148435, −4.57101578870649245497671745451, −3.75266310760009580430077772796, −2.93397168849234229296313183357, −1.93946223746560294761572744775, −0.50331913039915313525533151143, 0.77291279307250827121090614609, 2.31816974988674510610027321892, 3.11233636152363740009145201238, 3.81217780312528192505641464161, 4.80099075538725038233524914718, 5.77096868666143806399347314917, 6.48375384300074894731088333796, 6.92055068168873206000867447245, 7.81459001636716789002298772471, 8.800623520884090510989938261672

Graph of the $Z$-function along the critical line