L(s) = 1 | + 5-s + 3i·7-s − 2·11-s + (3 − 2i)13-s − 3·17-s − 6·23-s − 4·25-s + 6i·29-s + 3i·35-s − 3·37-s − 10i·41-s + 9i·43-s + 7i·47-s − 2·49-s − 6i·53-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.13i·7-s − 0.603·11-s + (0.832 − 0.554i)13-s − 0.727·17-s − 1.25·23-s − 0.800·25-s + 1.11i·29-s + 0.507i·35-s − 0.493·37-s − 1.56i·41-s + 1.37i·43-s + 1.02i·47-s − 0.285·49-s − 0.824i·53-s + ⋯ |
Λ(s)=(=(3744s/2ΓC(s)L(s)(−0.980−0.196i)Λ(2−s)
Λ(s)=(=(3744s/2ΓC(s+1/2)L(s)(−0.980−0.196i)Λ(1−s)
Degree: |
2 |
Conductor: |
3744
= 25⋅32⋅13
|
Sign: |
−0.980−0.196i
|
Analytic conductor: |
29.8959 |
Root analytic conductor: |
5.46772 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3744(1585,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3744, ( :1/2), −0.980−0.196i)
|
Particular Values
L(1) |
≈ |
0.5484268275 |
L(21) |
≈ |
0.5484268275 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−3+2i)T |
good | 5 | 1−T+5T2 |
| 7 | 1−3iT−7T2 |
| 11 | 1+2T+11T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+6T+23T2 |
| 29 | 1−6iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1+3T+37T2 |
| 41 | 1+10iT−41T2 |
| 43 | 1−9iT−43T2 |
| 47 | 1−7iT−47T2 |
| 53 | 1+6iT−53T2 |
| 59 | 1+10T+59T2 |
| 61 | 1−10iT−61T2 |
| 67 | 1+12T+67T2 |
| 71 | 1−5iT−71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1−16T+83T2 |
| 89 | 1−4iT−89T2 |
| 97 | 1+18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.869512354462601399654551415056, −8.211010742775666279718371238507, −7.50517299867787095471162236233, −6.41158513193436131253351348246, −5.84981594954039124744514809038, −5.32218129745857483059681628483, −4.32113556113918426629979024348, −3.27840343935163274625854080462, −2.42769242749467014929904873173, −1.59996790756401227109921359506,
0.14748134850072264780085898210, 1.53107726336924127940583740583, 2.40029102597249136560902495368, 3.69055430505702448338018136457, 4.19373498968219773073118436251, 5.11433187728673941286343198260, 6.14448099354391109716302156388, 6.52346341183531242304633628487, 7.57128160868109870392226098742, 8.013296097028327413479950037862