L(s) = 1 | + (0.809 − 0.587i)2-s + (0.809 + 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + 10-s + (0.309 + 0.951i)14-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (−0.309 − 0.951i)19-s + (−0.809 + 0.587i)31-s + (−0.809 + 0.587i)35-s + (−0.809 − 0.587i)38-s + (−0.309 + 0.951i)40-s + (−0.309 − 0.951i)41-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.809 + 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + 10-s + (0.309 + 0.951i)14-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (−0.309 − 0.951i)19-s + (−0.809 + 0.587i)31-s + (−0.809 + 0.587i)35-s + (−0.809 − 0.587i)38-s + (−0.309 + 0.951i)40-s + (−0.309 − 0.951i)41-s + ⋯ |
Λ(s)=(=(3751s/2ΓC(s)L(s)(0.394−0.918i)Λ(1−s)
Λ(s)=(=(3751s/2ΓC(s)L(s)(0.394−0.918i)Λ(1−s)
Degree: |
2 |
Conductor: |
3751
= 112⋅31
|
Sign: |
0.394−0.918i
|
Analytic conductor: |
1.87199 |
Root analytic conductor: |
1.36820 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3751(2665,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3751, ( :0), 0.394−0.918i)
|
Particular Values
L(21) |
≈ |
1.878294047 |
L(21) |
≈ |
1.878294047 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 31 | 1+(0.809−0.587i)T |
good | 2 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 3 | 1+(0.809−0.587i)T2 |
| 5 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 7 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 13 | 1+(−0.309+0.951i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 23 | 1−T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 37 | 1+(0.809+0.587i)T2 |
| 41 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 43 | 1−T2 |
| 47 | 1+(−0.618−1.90i)T+(−0.809+0.587i)T2 |
| 53 | 1+(−0.309+0.951i)T2 |
| 59 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 61 | 1+(−0.309−0.951i)T2 |
| 67 | 1−2T+T2 |
| 71 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 73 | 1+(0.809+0.587i)T2 |
| 79 | 1+(−0.309+0.951i)T2 |
| 83 | 1+(−0.309−0.951i)T2 |
| 89 | 1−T2 |
| 97 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.865759035976756499585804414560, −8.232320479888020984348650656612, −7.27986102353502263297957841015, −6.34407447355327976325286589067, −5.62914948964720896353937230977, −5.17014741286682485294537916042, −4.18788539677489518681182815094, −3.07806847147647289718962838373, −2.58909926273536046115443110364, −1.97998059310487040622668083219,
0.794832609025574265063446231271, 1.98825885285986777616926286892, 3.49604723019356014815660060017, 3.92376382026510653570868208890, 5.01203950845598792244310935116, 5.54267293434978380573326131759, 6.23832280175916771384638210682, 6.77078528999218754723943059867, 7.65317006439107602398218689116, 8.523811297572916222778990718099