L(s) = 1 | + (0.809 − 0.587i)2-s + (0.809 + 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + 10-s + (0.309 + 0.951i)14-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (−0.309 − 0.951i)19-s + (−0.809 + 0.587i)31-s + (−0.809 + 0.587i)35-s + (−0.809 − 0.587i)38-s + (−0.309 + 0.951i)40-s + (−0.309 − 0.951i)41-s + ⋯ |
L(s) = 1 | + (0.809 − 0.587i)2-s + (0.809 + 0.587i)5-s + (−0.309 + 0.951i)7-s + (0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + 10-s + (0.309 + 0.951i)14-s + (0.809 + 0.587i)16-s + (−0.309 + 0.951i)18-s + (−0.309 − 0.951i)19-s + (−0.809 + 0.587i)31-s + (−0.809 + 0.587i)35-s + (−0.809 − 0.587i)38-s + (−0.309 + 0.951i)40-s + (−0.309 − 0.951i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.394 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.878294047\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.878294047\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
good | 2 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 3 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.618 - 1.90i)T + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.309 - 0.951i)T + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.865759035976756499585804414560, −8.232320479888020984348650656612, −7.27986102353502263297957841015, −6.34407447355327976325286589067, −5.62914948964720896353937230977, −5.17014741286682485294537916042, −4.18788539677489518681182815094, −3.07806847147647289718962838373, −2.58909926273536046115443110364, −1.97998059310487040622668083219,
0.794832609025574265063446231271, 1.98825885285986777616926286892, 3.49604723019356014815660060017, 3.92376382026510653570868208890, 5.01203950845598792244310935116, 5.54267293434978380573326131759, 6.23832280175916771384638210682, 6.77078528999218754723943059867, 7.65317006439107602398218689116, 8.523811297572916222778990718099