L(s) = 1 | − 2-s + 4-s + 1.60i·5-s + 1.65i·7-s − 8-s − 1.60i·10-s + (1.87 + 2.73i)11-s + 1.23i·13-s − 1.65i·14-s + 16-s − 1.74·17-s + i·19-s + 1.60i·20-s + (−1.87 − 2.73i)22-s − 5.99i·23-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 0.715i·5-s + 0.625i·7-s − 0.353·8-s − 0.506i·10-s + (0.563 + 0.825i)11-s + 0.343i·13-s − 0.442i·14-s + 0.250·16-s − 0.423·17-s + 0.229i·19-s + 0.357i·20-s + (−0.398 − 0.583i)22-s − 1.24i·23-s + ⋯ |
Λ(s)=(=(3762s/2ΓC(s)L(s)(0.0163−0.999i)Λ(2−s)
Λ(s)=(=(3762s/2ΓC(s+1/2)L(s)(0.0163−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
3762
= 2⋅32⋅11⋅19
|
Sign: |
0.0163−0.999i
|
Analytic conductor: |
30.0397 |
Root analytic conductor: |
5.48085 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3762(989,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3762, ( :1/2), 0.0163−0.999i)
|
Particular Values
L(1) |
≈ |
1.402985840 |
L(21) |
≈ |
1.402985840 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 11 | 1+(−1.87−2.73i)T |
| 19 | 1−iT |
good | 5 | 1−1.60iT−5T2 |
| 7 | 1−1.65iT−7T2 |
| 13 | 1−1.23iT−13T2 |
| 17 | 1+1.74T+17T2 |
| 23 | 1+5.99iT−23T2 |
| 29 | 1−7.25T+29T2 |
| 31 | 1−10.5T+31T2 |
| 37 | 1−7.98T+37T2 |
| 41 | 1+8.60T+41T2 |
| 43 | 1+5.30iT−43T2 |
| 47 | 1−2.24iT−47T2 |
| 53 | 1−4.01iT−53T2 |
| 59 | 1−10.9iT−59T2 |
| 61 | 1+0.355iT−61T2 |
| 67 | 1−9.96T+67T2 |
| 71 | 1−8.44iT−71T2 |
| 73 | 1−1.24iT−73T2 |
| 79 | 1+1.72iT−79T2 |
| 83 | 1−8.04T+83T2 |
| 89 | 1+4.10iT−89T2 |
| 97 | 1+3.14T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.620212270785293130436412624412, −8.167195716607342972661773368454, −7.05610566117266640061331497629, −6.65905789420423989706152859853, −6.05899689156203573665916065628, −4.84483790529076287705667215532, −4.12415036203119460946580307309, −2.78666272506766606916506376319, −2.37211655044438837294615234623, −1.08153439038145249076999474908,
0.65925847946975348974680297353, 1.30704780455167519631349359702, 2.68958510030668742055065821860, 3.58440010608028372191687678253, 4.55653083859008814768608233450, 5.30728906562932161581042534220, 6.40174053736171140916674536068, 6.75443112680197751282500271427, 7.954002652594793023036410874016, 8.230634864030640758955405388889