Properties

Label 2-3762-33.32-c1-0-22
Degree $2$
Conductor $3762$
Sign $0.0163 - 0.999i$
Analytic cond. $30.0397$
Root an. cond. $5.48085$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 1.60i·5-s + 1.65i·7-s − 8-s − 1.60i·10-s + (1.87 + 2.73i)11-s + 1.23i·13-s − 1.65i·14-s + 16-s − 1.74·17-s + i·19-s + 1.60i·20-s + (−1.87 − 2.73i)22-s − 5.99i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.715i·5-s + 0.625i·7-s − 0.353·8-s − 0.506i·10-s + (0.563 + 0.825i)11-s + 0.343i·13-s − 0.442i·14-s + 0.250·16-s − 0.423·17-s + 0.229i·19-s + 0.357i·20-s + (−0.398 − 0.583i)22-s − 1.24i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0163 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0163 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3762\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 19\)
Sign: $0.0163 - 0.999i$
Analytic conductor: \(30.0397\)
Root analytic conductor: \(5.48085\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3762} (989, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3762,\ (\ :1/2),\ 0.0163 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.402985840\)
\(L(\frac12)\) \(\approx\) \(1.402985840\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 + (-1.87 - 2.73i)T \)
19 \( 1 - iT \)
good5 \( 1 - 1.60iT - 5T^{2} \)
7 \( 1 - 1.65iT - 7T^{2} \)
13 \( 1 - 1.23iT - 13T^{2} \)
17 \( 1 + 1.74T + 17T^{2} \)
23 \( 1 + 5.99iT - 23T^{2} \)
29 \( 1 - 7.25T + 29T^{2} \)
31 \( 1 - 10.5T + 31T^{2} \)
37 \( 1 - 7.98T + 37T^{2} \)
41 \( 1 + 8.60T + 41T^{2} \)
43 \( 1 + 5.30iT - 43T^{2} \)
47 \( 1 - 2.24iT - 47T^{2} \)
53 \( 1 - 4.01iT - 53T^{2} \)
59 \( 1 - 10.9iT - 59T^{2} \)
61 \( 1 + 0.355iT - 61T^{2} \)
67 \( 1 - 9.96T + 67T^{2} \)
71 \( 1 - 8.44iT - 71T^{2} \)
73 \( 1 - 1.24iT - 73T^{2} \)
79 \( 1 + 1.72iT - 79T^{2} \)
83 \( 1 - 8.04T + 83T^{2} \)
89 \( 1 + 4.10iT - 89T^{2} \)
97 \( 1 + 3.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.620212270785293130436412624412, −8.167195716607342972661773368454, −7.05610566117266640061331497629, −6.65905789420423989706152859853, −6.05899689156203573665916065628, −4.84483790529076287705667215532, −4.12415036203119460946580307309, −2.78666272506766606916506376319, −2.37211655044438837294615234623, −1.08153439038145249076999474908, 0.65925847946975348974680297353, 1.30704780455167519631349359702, 2.68958510030668742055065821860, 3.58440010608028372191687678253, 4.55653083859008814768608233450, 5.30728906562932161581042534220, 6.40174053736171140916674536068, 6.75443112680197751282500271427, 7.954002652594793023036410874016, 8.230634864030640758955405388889

Graph of the $Z$-function along the critical line