Properties

Label 2-3762-33.32-c1-0-27
Degree $2$
Conductor $3762$
Sign $0.975 + 0.218i$
Analytic cond. $30.0397$
Root an. cond. $5.48085$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.66i·5-s − 2.53i·7-s − 8-s − 3.66i·10-s + (−3.06 + 1.27i)11-s − 4.46i·13-s + 2.53i·14-s + 16-s − 4.49·17-s + i·19-s + 3.66i·20-s + (3.06 − 1.27i)22-s + 1.13i·23-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.63i·5-s − 0.956i·7-s − 0.353·8-s − 1.15i·10-s + (−0.922 + 0.385i)11-s − 1.23i·13-s + 0.676i·14-s + 0.250·16-s − 1.08·17-s + 0.229i·19-s + 0.819i·20-s + (0.652 − 0.272i)22-s + 0.237i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 + 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3762\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 19\)
Sign: $0.975 + 0.218i$
Analytic conductor: \(30.0397\)
Root analytic conductor: \(5.48085\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3762} (989, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3762,\ (\ :1/2),\ 0.975 + 0.218i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9320646992\)
\(L(\frac12)\) \(\approx\) \(0.9320646992\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 + (3.06 - 1.27i)T \)
19 \( 1 - iT \)
good5 \( 1 - 3.66iT - 5T^{2} \)
7 \( 1 + 2.53iT - 7T^{2} \)
13 \( 1 + 4.46iT - 13T^{2} \)
17 \( 1 + 4.49T + 17T^{2} \)
23 \( 1 - 1.13iT - 23T^{2} \)
29 \( 1 - 0.163T + 29T^{2} \)
31 \( 1 + 1.06T + 31T^{2} \)
37 \( 1 - 9.12T + 37T^{2} \)
41 \( 1 - 2.31T + 41T^{2} \)
43 \( 1 - 2.90iT - 43T^{2} \)
47 \( 1 - 1.49iT - 47T^{2} \)
53 \( 1 + 2.25iT - 53T^{2} \)
59 \( 1 + 11.6iT - 59T^{2} \)
61 \( 1 + 1.04iT - 61T^{2} \)
67 \( 1 - 3.11T + 67T^{2} \)
71 \( 1 + 8.92iT - 71T^{2} \)
73 \( 1 - 4.92iT - 73T^{2} \)
79 \( 1 - 3.42iT - 79T^{2} \)
83 \( 1 - 8.45T + 83T^{2} \)
89 \( 1 + 15.1iT - 89T^{2} \)
97 \( 1 - 0.446T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.184586235722084199802905555849, −7.70257436419051498811015732904, −7.17986296151329307122152544221, −6.49118463059028356618715709980, −5.77714825911738872937368430421, −4.62789861133655450006098002216, −3.55726452205827922447116235399, −2.84491782738761230640128297553, −2.07935569643157136470923766197, −0.48390853253535143422705690464, 0.75455244614972764315745600954, 1.94927227210670607210340320560, 2.60976021105525618929461965427, 4.11789075193056093246131454537, 4.79491110818833358494992949056, 5.58172490338217774970303930336, 6.23891761444405934642596415698, 7.23290174915059599509545261257, 8.125465545961774192217562736646, 8.661508913746056431830344755084

Graph of the $Z$-function along the critical line