L(s) = 1 | − 2-s + 4-s + 3.66i·5-s − 2.53i·7-s − 8-s − 3.66i·10-s + (−3.06 + 1.27i)11-s − 4.46i·13-s + 2.53i·14-s + 16-s − 4.49·17-s + i·19-s + 3.66i·20-s + (3.06 − 1.27i)22-s + 1.13i·23-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 1.63i·5-s − 0.956i·7-s − 0.353·8-s − 1.15i·10-s + (−0.922 + 0.385i)11-s − 1.23i·13-s + 0.676i·14-s + 0.250·16-s − 1.08·17-s + 0.229i·19-s + 0.819i·20-s + (0.652 − 0.272i)22-s + 0.237i·23-s + ⋯ |
Λ(s)=(=(3762s/2ΓC(s)L(s)(0.975+0.218i)Λ(2−s)
Λ(s)=(=(3762s/2ΓC(s+1/2)L(s)(0.975+0.218i)Λ(1−s)
Degree: |
2 |
Conductor: |
3762
= 2⋅32⋅11⋅19
|
Sign: |
0.975+0.218i
|
Analytic conductor: |
30.0397 |
Root analytic conductor: |
5.48085 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3762(989,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3762, ( :1/2), 0.975+0.218i)
|
Particular Values
L(1) |
≈ |
0.9320646992 |
L(21) |
≈ |
0.9320646992 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 11 | 1+(3.06−1.27i)T |
| 19 | 1−iT |
good | 5 | 1−3.66iT−5T2 |
| 7 | 1+2.53iT−7T2 |
| 13 | 1+4.46iT−13T2 |
| 17 | 1+4.49T+17T2 |
| 23 | 1−1.13iT−23T2 |
| 29 | 1−0.163T+29T2 |
| 31 | 1+1.06T+31T2 |
| 37 | 1−9.12T+37T2 |
| 41 | 1−2.31T+41T2 |
| 43 | 1−2.90iT−43T2 |
| 47 | 1−1.49iT−47T2 |
| 53 | 1+2.25iT−53T2 |
| 59 | 1+11.6iT−59T2 |
| 61 | 1+1.04iT−61T2 |
| 67 | 1−3.11T+67T2 |
| 71 | 1+8.92iT−71T2 |
| 73 | 1−4.92iT−73T2 |
| 79 | 1−3.42iT−79T2 |
| 83 | 1−8.45T+83T2 |
| 89 | 1+15.1iT−89T2 |
| 97 | 1−0.446T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.184586235722084199802905555849, −7.70257436419051498811015732904, −7.17986296151329307122152544221, −6.49118463059028356618715709980, −5.77714825911738872937368430421, −4.62789861133655450006098002216, −3.55726452205827922447116235399, −2.84491782738761230640128297553, −2.07935569643157136470923766197, −0.48390853253535143422705690464,
0.75455244614972764315745600954, 1.94927227210670607210340320560, 2.60976021105525618929461965427, 4.11789075193056093246131454537, 4.79491110818833358494992949056, 5.58172490338217774970303930336, 6.23891761444405934642596415698, 7.23290174915059599509545261257, 8.125465545961774192217562736646, 8.661508913746056431830344755084