L(s) = 1 | + (0.173 + 0.984i)2-s + (−1.70 + 0.300i)3-s + (−0.939 + 0.342i)4-s + (−1.03 − 0.866i)5-s + (−0.592 − 1.62i)6-s + (−0.939 − 0.342i)7-s + (−0.5 − 0.866i)8-s + (2.81 − 1.02i)9-s + (0.673 − 1.16i)10-s + (3.64 − 3.05i)11-s + (1.49 − 0.866i)12-s + (0.266 − 1.50i)13-s + (0.173 − 0.984i)14-s + (2.02 + 1.16i)15-s + (0.766 − 0.642i)16-s + (−1.11 + 1.92i)17-s + ⋯ |
L(s) = 1 | + (0.122 + 0.696i)2-s + (−0.984 + 0.173i)3-s + (−0.469 + 0.171i)4-s + (−0.461 − 0.387i)5-s + (−0.241 − 0.664i)6-s + (−0.355 − 0.129i)7-s + (−0.176 − 0.306i)8-s + (0.939 − 0.342i)9-s + (0.213 − 0.368i)10-s + (1.09 − 0.922i)11-s + (0.433 − 0.249i)12-s + (0.0737 − 0.418i)13-s + (0.0464 − 0.263i)14-s + (0.521 + 0.301i)15-s + (0.191 − 0.160i)16-s + (−0.270 + 0.467i)17-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.993+0.116i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.993+0.116i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.993+0.116i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.993+0.116i)
|
Particular Values
L(1) |
≈ |
0.871721−0.0507719i |
L(21) |
≈ |
0.871721−0.0507719i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.173−0.984i)T |
| 3 | 1+(1.70−0.300i)T |
| 7 | 1+(0.939+0.342i)T |
good | 5 | 1+(1.03+0.866i)T+(0.868+4.92i)T2 |
| 11 | 1+(−3.64+3.05i)T+(1.91−10.8i)T2 |
| 13 | 1+(−0.266+1.50i)T+(−12.2−4.44i)T2 |
| 17 | 1+(1.11−1.92i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.79−4.84i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−7.57+2.75i)T+(17.6−14.7i)T2 |
| 29 | 1+(1.85+10.5i)T+(−27.2+9.91i)T2 |
| 31 | 1+(−1.37+0.502i)T+(23.7−19.9i)T2 |
| 37 | 1+(−0.815+1.41i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−1.75+9.97i)T+(−38.5−14.0i)T2 |
| 43 | 1+(6.70−5.63i)T+(7.46−42.3i)T2 |
| 47 | 1+(−8.35−3.03i)T+(36.0+30.2i)T2 |
| 53 | 1−1.32T+53T2 |
| 59 | 1+(7.16+6.01i)T+(10.2+58.1i)T2 |
| 61 | 1+(−3.08−1.12i)T+(46.7+39.2i)T2 |
| 67 | 1+(0.470−2.66i)T+(−62.9−22.9i)T2 |
| 71 | 1+(2.10−3.64i)T+(−35.5−61.4i)T2 |
| 73 | 1+(4.54+7.87i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−0.556−3.15i)T+(−74.2+27.0i)T2 |
| 83 | 1+(2.22+12.6i)T+(−77.9+28.3i)T2 |
| 89 | 1+(0.779+1.35i)T+(−44.5+77.0i)T2 |
| 97 | 1+(9.91−8.31i)T+(16.8−95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47620145947200787826983742815, −10.47502985172644888923077277655, −9.454610451456002526289722313124, −8.496728257358985066141139419258, −7.44727101291300540171248202030, −6.33094094610710624952731851290, −5.77420506695725453505405418021, −4.48056608614308113383340474784, −3.63334277362969873672709770248, −0.75551355626911789136133263968,
1.36587140397128264326838243014, 3.16563681769817311945100985196, 4.44483479195359510960871454432, 5.33058048778540071897575458397, 6.89997068848061516252607600840, 7.10996443877423341199700773964, 9.028039381733479485965923485953, 9.624311882683919499542113070624, 10.82561694135699951935131934885, 11.42910366964784561219462478145