L(s) = 1 | + (0.939 + 0.342i)2-s + (−1.33 − 1.10i)3-s + (0.766 + 0.642i)4-s + (−0.412 + 2.33i)5-s + (−0.874 − 1.49i)6-s + (−0.766 + 0.642i)7-s + (0.500 + 0.866i)8-s + (0.555 + 2.94i)9-s + (−1.18 + 2.05i)10-s + (0.330 + 1.87i)11-s + (−0.310 − 1.70i)12-s + (−0.325 + 0.118i)13-s + (−0.939 + 0.342i)14-s + (3.13 − 2.66i)15-s + (0.173 + 0.984i)16-s + (−1.98 + 3.43i)17-s + ⋯ |
L(s) = 1 | + (0.664 + 0.241i)2-s + (−0.769 − 0.638i)3-s + (0.383 + 0.321i)4-s + (−0.184 + 1.04i)5-s + (−0.357 − 0.610i)6-s + (−0.289 + 0.242i)7-s + (0.176 + 0.306i)8-s + (0.185 + 0.982i)9-s + (−0.375 + 0.650i)10-s + (0.0997 + 0.565i)11-s + (−0.0897 − 0.491i)12-s + (−0.0902 + 0.0328i)13-s + (−0.251 + 0.0914i)14-s + (0.809 − 0.687i)15-s + (0.0434 + 0.246i)16-s + (−0.480 + 0.832i)17-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.0984−0.995i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.0984−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.0984−0.995i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(85,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.0984−0.995i)
|
Particular Values
L(1) |
≈ |
0.986152+0.893376i |
L(21) |
≈ |
0.986152+0.893376i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.939−0.342i)T |
| 3 | 1+(1.33+1.10i)T |
| 7 | 1+(0.766−0.642i)T |
good | 5 | 1+(0.412−2.33i)T+(−4.69−1.71i)T2 |
| 11 | 1+(−0.330−1.87i)T+(−10.3+3.76i)T2 |
| 13 | 1+(0.325−0.118i)T+(9.95−8.35i)T2 |
| 17 | 1+(1.98−3.43i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.954−1.65i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−1.91−1.60i)T+(3.99+22.6i)T2 |
| 29 | 1+(−7.53−2.74i)T+(22.2+18.6i)T2 |
| 31 | 1+(3.82+3.20i)T+(5.38+30.5i)T2 |
| 37 | 1+(0.898−1.55i)T+(−18.5−32.0i)T2 |
| 41 | 1+(8.54−3.10i)T+(31.4−26.3i)T2 |
| 43 | 1+(1.74+9.89i)T+(−40.4+14.7i)T2 |
| 47 | 1+(−9.88+8.29i)T+(8.16−46.2i)T2 |
| 53 | 1+2.36T+53T2 |
| 59 | 1+(−0.541+3.07i)T+(−55.4−20.1i)T2 |
| 61 | 1+(2.82−2.37i)T+(10.5−60.0i)T2 |
| 67 | 1+(−3.72+1.35i)T+(51.3−43.0i)T2 |
| 71 | 1+(0.671−1.16i)T+(−35.5−61.4i)T2 |
| 73 | 1+(4.74+8.22i)T+(−36.5+63.2i)T2 |
| 79 | 1+(3.98+1.45i)T+(60.5+50.7i)T2 |
| 83 | 1+(−7.30−2.65i)T+(63.5+53.3i)T2 |
| 89 | 1+(−7.20−12.4i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.51+14.2i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.78220286460410847518183842954, −10.80973933152597441307376723942, −10.17121634943076061247319124208, −8.554595012345043829907292121806, −7.33006896303218411804832917890, −6.79803464419227001437035941825, −5.95864086854930525236925495983, −4.86239668729538213259686164056, −3.46705239413104855360979427644, −2.08474523955620973701236294486,
0.814441443001673490886205861847, 3.12415147646527095042214825404, 4.43286777002157351550230606138, 4.98739260616200007541400580960, 6.07004791011245640196753896488, 7.07085013340698062600879695189, 8.625640619835064558046279804789, 9.428090092074027714360439402362, 10.44632719835734938454900205995, 11.27813675563432963432693326323