Properties

Label 2-380-20.7-c1-0-6
Degree 22
Conductor 380380
Sign 0.2670.963i-0.267 - 0.963i
Analytic cond. 3.034313.03431
Root an. cond. 1.741921.74192
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.38 − 0.287i)2-s + (1.15 + 1.15i)3-s + (1.83 + 0.796i)4-s + (−0.283 − 2.21i)5-s + (−1.26 − 1.93i)6-s + (−3.26 + 3.26i)7-s + (−2.31 − 1.63i)8-s − 0.330i·9-s + (−0.246 + 3.15i)10-s + 4.56i·11-s + (1.19 + 3.04i)12-s + (−3.90 + 3.90i)13-s + (5.45 − 3.57i)14-s + (2.23 − 2.89i)15-s + (2.72 + 2.92i)16-s + (3.68 + 3.68i)17-s + ⋯
L(s)  = 1  + (−0.979 − 0.203i)2-s + (0.667 + 0.667i)3-s + (0.917 + 0.398i)4-s + (−0.126 − 0.991i)5-s + (−0.517 − 0.788i)6-s + (−1.23 + 1.23i)7-s + (−0.816 − 0.576i)8-s − 0.110i·9-s + (−0.0778 + 0.996i)10-s + 1.37i·11-s + (0.346 + 0.877i)12-s + (−1.08 + 1.08i)13-s + (1.45 − 0.956i)14-s + (0.577 − 0.746i)15-s + (0.682 + 0.730i)16-s + (0.894 + 0.894i)17-s + ⋯

Functional equation

Λ(s)=(380s/2ΓC(s)L(s)=((0.2670.963i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.267 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(380s/2ΓC(s+1/2)L(s)=((0.2670.963i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.267 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 380380    =    225192^{2} \cdot 5 \cdot 19
Sign: 0.2670.963i-0.267 - 0.963i
Analytic conductor: 3.034313.03431
Root analytic conductor: 1.741921.74192
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ380(267,)\chi_{380} (267, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 380, ( :1/2), 0.2670.963i)(2,\ 380,\ (\ :1/2),\ -0.267 - 0.963i)

Particular Values

L(1)L(1) \approx 0.436046+0.573571i0.436046 + 0.573571i
L(12)L(\frac12) \approx 0.436046+0.573571i0.436046 + 0.573571i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.38+0.287i)T 1 + (1.38 + 0.287i)T
5 1+(0.283+2.21i)T 1 + (0.283 + 2.21i)T
19 1T 1 - T
good3 1+(1.151.15i)T+3iT2 1 + (-1.15 - 1.15i)T + 3iT^{2}
7 1+(3.263.26i)T7iT2 1 + (3.26 - 3.26i)T - 7iT^{2}
11 14.56iT11T2 1 - 4.56iT - 11T^{2}
13 1+(3.903.90i)T13iT2 1 + (3.90 - 3.90i)T - 13iT^{2}
17 1+(3.683.68i)T+17iT2 1 + (-3.68 - 3.68i)T + 17iT^{2}
23 1+(0.671+0.671i)T+23iT2 1 + (0.671 + 0.671i)T + 23iT^{2}
29 11.43iT29T2 1 - 1.43iT - 29T^{2}
31 12.10iT31T2 1 - 2.10iT - 31T^{2}
37 1+(3.013.01i)T+37iT2 1 + (-3.01 - 3.01i)T + 37iT^{2}
41 13.51T+41T2 1 - 3.51T + 41T^{2}
43 1+(1.49+1.49i)T+43iT2 1 + (1.49 + 1.49i)T + 43iT^{2}
47 1+(5.495.49i)T47iT2 1 + (5.49 - 5.49i)T - 47iT^{2}
53 1+(5.92+5.92i)T53iT2 1 + (-5.92 + 5.92i)T - 53iT^{2}
59 11.07T+59T2 1 - 1.07T + 59T^{2}
61 1+11.0T+61T2 1 + 11.0T + 61T^{2}
67 1+(1.291.29i)T67iT2 1 + (1.29 - 1.29i)T - 67iT^{2}
71 1+1.88iT71T2 1 + 1.88iT - 71T^{2}
73 1+(3.203.20i)T73iT2 1 + (3.20 - 3.20i)T - 73iT^{2}
79 12.07T+79T2 1 - 2.07T + 79T^{2}
83 1+(2.08+2.08i)T+83iT2 1 + (2.08 + 2.08i)T + 83iT^{2}
89 1+10.9iT89T2 1 + 10.9iT - 89T^{2}
97 1+(1.721.72i)T+97iT2 1 + (-1.72 - 1.72i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.89770913902637702324537485677, −10.04132199155926009821489021984, −9.644350280685918849920683192643, −9.140144759514188683486624810593, −8.333319893387033085883876775158, −7.13506728689290900865514348963, −6.01115768653512510287497852816, −4.52659176605242840702636182481, −3.23958979593105132629091035674, −2.01098736859446933173818569297, 0.58070053936081587941071514345, 2.74554618809281266563768532459, 3.29496735043519364932270735134, 5.72577303274913388668140438895, 6.76535969075419695444065569769, 7.57224830397767894096912299939, 7.87763452743175684697152788676, 9.339856751478890715009551627316, 10.17662392215210002406929402654, 10.70619683826276133256137904466

Graph of the ZZ-function along the critical line