L(s) = 1 | + (−1.38 − 0.287i)2-s + (1.15 + 1.15i)3-s + (1.83 + 0.796i)4-s + (−0.283 − 2.21i)5-s + (−1.26 − 1.93i)6-s + (−3.26 + 3.26i)7-s + (−2.31 − 1.63i)8-s − 0.330i·9-s + (−0.246 + 3.15i)10-s + 4.56i·11-s + (1.19 + 3.04i)12-s + (−3.90 + 3.90i)13-s + (5.45 − 3.57i)14-s + (2.23 − 2.89i)15-s + (2.72 + 2.92i)16-s + (3.68 + 3.68i)17-s + ⋯ |
L(s) = 1 | + (−0.979 − 0.203i)2-s + (0.667 + 0.667i)3-s + (0.917 + 0.398i)4-s + (−0.126 − 0.991i)5-s + (−0.517 − 0.788i)6-s + (−1.23 + 1.23i)7-s + (−0.816 − 0.576i)8-s − 0.110i·9-s + (−0.0778 + 0.996i)10-s + 1.37i·11-s + (0.346 + 0.877i)12-s + (−1.08 + 1.08i)13-s + (1.45 − 0.956i)14-s + (0.577 − 0.746i)15-s + (0.682 + 0.730i)16-s + (0.894 + 0.894i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.267 - 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.267 - 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.436046 + 0.573571i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.436046 + 0.573571i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 + 0.287i)T \) |
| 5 | \( 1 + (0.283 + 2.21i)T \) |
| 19 | \( 1 - T \) |
good | 3 | \( 1 + (-1.15 - 1.15i)T + 3iT^{2} \) |
| 7 | \( 1 + (3.26 - 3.26i)T - 7iT^{2} \) |
| 11 | \( 1 - 4.56iT - 11T^{2} \) |
| 13 | \( 1 + (3.90 - 3.90i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3.68 - 3.68i)T + 17iT^{2} \) |
| 23 | \( 1 + (0.671 + 0.671i)T + 23iT^{2} \) |
| 29 | \( 1 - 1.43iT - 29T^{2} \) |
| 31 | \( 1 - 2.10iT - 31T^{2} \) |
| 37 | \( 1 + (-3.01 - 3.01i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.51T + 41T^{2} \) |
| 43 | \( 1 + (1.49 + 1.49i)T + 43iT^{2} \) |
| 47 | \( 1 + (5.49 - 5.49i)T - 47iT^{2} \) |
| 53 | \( 1 + (-5.92 + 5.92i)T - 53iT^{2} \) |
| 59 | \( 1 - 1.07T + 59T^{2} \) |
| 61 | \( 1 + 11.0T + 61T^{2} \) |
| 67 | \( 1 + (1.29 - 1.29i)T - 67iT^{2} \) |
| 71 | \( 1 + 1.88iT - 71T^{2} \) |
| 73 | \( 1 + (3.20 - 3.20i)T - 73iT^{2} \) |
| 79 | \( 1 - 2.07T + 79T^{2} \) |
| 83 | \( 1 + (2.08 + 2.08i)T + 83iT^{2} \) |
| 89 | \( 1 + 10.9iT - 89T^{2} \) |
| 97 | \( 1 + (-1.72 - 1.72i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89770913902637702324537485677, −10.04132199155926009821489021984, −9.644350280685918849920683192643, −9.140144759514188683486624810593, −8.333319893387033085883876775158, −7.13506728689290900865514348963, −6.01115768653512510287497852816, −4.52659176605242840702636182481, −3.23958979593105132629091035674, −2.01098736859446933173818569297,
0.58070053936081587941071514345, 2.74554618809281266563768532459, 3.29496735043519364932270735134, 5.72577303274913388668140438895, 6.76535969075419695444065569769, 7.57224830397767894096912299939, 7.87763452743175684697152788676, 9.339856751478890715009551627316, 10.17662392215210002406929402654, 10.70619683826276133256137904466