L(s) = 1 | + (−1.38 − 0.287i)2-s + (1.15 + 1.15i)3-s + (1.83 + 0.796i)4-s + (−0.283 − 2.21i)5-s + (−1.26 − 1.93i)6-s + (−3.26 + 3.26i)7-s + (−2.31 − 1.63i)8-s − 0.330i·9-s + (−0.246 + 3.15i)10-s + 4.56i·11-s + (1.19 + 3.04i)12-s + (−3.90 + 3.90i)13-s + (5.45 − 3.57i)14-s + (2.23 − 2.89i)15-s + (2.72 + 2.92i)16-s + (3.68 + 3.68i)17-s + ⋯ |
L(s) = 1 | + (−0.979 − 0.203i)2-s + (0.667 + 0.667i)3-s + (0.917 + 0.398i)4-s + (−0.126 − 0.991i)5-s + (−0.517 − 0.788i)6-s + (−1.23 + 1.23i)7-s + (−0.816 − 0.576i)8-s − 0.110i·9-s + (−0.0778 + 0.996i)10-s + 1.37i·11-s + (0.346 + 0.877i)12-s + (−1.08 + 1.08i)13-s + (1.45 − 0.956i)14-s + (0.577 − 0.746i)15-s + (0.682 + 0.730i)16-s + (0.894 + 0.894i)17-s + ⋯ |
Λ(s)=(=(380s/2ΓC(s)L(s)(−0.267−0.963i)Λ(2−s)
Λ(s)=(=(380s/2ΓC(s+1/2)L(s)(−0.267−0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
380
= 22⋅5⋅19
|
Sign: |
−0.267−0.963i
|
Analytic conductor: |
3.03431 |
Root analytic conductor: |
1.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ380(267,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 380, ( :1/2), −0.267−0.963i)
|
Particular Values
L(1) |
≈ |
0.436046+0.573571i |
L(21) |
≈ |
0.436046+0.573571i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.38+0.287i)T |
| 5 | 1+(0.283+2.21i)T |
| 19 | 1−T |
good | 3 | 1+(−1.15−1.15i)T+3iT2 |
| 7 | 1+(3.26−3.26i)T−7iT2 |
| 11 | 1−4.56iT−11T2 |
| 13 | 1+(3.90−3.90i)T−13iT2 |
| 17 | 1+(−3.68−3.68i)T+17iT2 |
| 23 | 1+(0.671+0.671i)T+23iT2 |
| 29 | 1−1.43iT−29T2 |
| 31 | 1−2.10iT−31T2 |
| 37 | 1+(−3.01−3.01i)T+37iT2 |
| 41 | 1−3.51T+41T2 |
| 43 | 1+(1.49+1.49i)T+43iT2 |
| 47 | 1+(5.49−5.49i)T−47iT2 |
| 53 | 1+(−5.92+5.92i)T−53iT2 |
| 59 | 1−1.07T+59T2 |
| 61 | 1+11.0T+61T2 |
| 67 | 1+(1.29−1.29i)T−67iT2 |
| 71 | 1+1.88iT−71T2 |
| 73 | 1+(3.20−3.20i)T−73iT2 |
| 79 | 1−2.07T+79T2 |
| 83 | 1+(2.08+2.08i)T+83iT2 |
| 89 | 1+10.9iT−89T2 |
| 97 | 1+(−1.72−1.72i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.89770913902637702324537485677, −10.04132199155926009821489021984, −9.644350280685918849920683192643, −9.140144759514188683486624810593, −8.333319893387033085883876775158, −7.13506728689290900865514348963, −6.01115768653512510287497852816, −4.52659176605242840702636182481, −3.23958979593105132629091035674, −2.01098736859446933173818569297,
0.58070053936081587941071514345, 2.74554618809281266563768532459, 3.29496735043519364932270735134, 5.72577303274913388668140438895, 6.76535969075419695444065569769, 7.57224830397767894096912299939, 7.87763452743175684697152788676, 9.339856751478890715009551627316, 10.17662392215210002406929402654, 10.70619683826276133256137904466