L(s) = 1 | + (−2.38 − 1.99i)3-s + (0.939 − 0.342i)5-s + (2.42 + 4.19i)7-s + (1.15 + 6.55i)9-s + (−0.912 + 1.57i)11-s + (4.37 − 3.67i)13-s + (−2.91 − 1.06i)15-s + (0.843 − 4.78i)17-s + (3.11 + 3.04i)19-s + (2.61 − 14.8i)21-s + (−3.49 − 1.27i)23-s + (0.766 − 0.642i)25-s + (5.67 − 9.83i)27-s + (0.509 + 2.88i)29-s + (−0.598 − 1.03i)31-s + ⋯ |
L(s) = 1 | + (−1.37 − 1.15i)3-s + (0.420 − 0.152i)5-s + (0.915 + 1.58i)7-s + (0.385 + 2.18i)9-s + (−0.275 + 0.476i)11-s + (1.21 − 1.01i)13-s + (−0.753 − 0.274i)15-s + (0.204 − 1.16i)17-s + (0.715 + 0.698i)19-s + (0.570 − 3.23i)21-s + (−0.728 − 0.264i)23-s + (0.153 − 0.128i)25-s + (1.09 − 1.89i)27-s + (0.0945 + 0.536i)29-s + (−0.107 − 0.186i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.904 + 0.426i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.904 + 0.426i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.03357 - 0.231347i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.03357 - 0.231347i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 + (-3.11 - 3.04i)T \) |
good | 3 | \( 1 + (2.38 + 1.99i)T + (0.520 + 2.95i)T^{2} \) |
| 7 | \( 1 + (-2.42 - 4.19i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.912 - 1.57i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.37 + 3.67i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.843 + 4.78i)T + (-15.9 - 5.81i)T^{2} \) |
| 23 | \( 1 + (3.49 + 1.27i)T + (17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (-0.509 - 2.88i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (0.598 + 1.03i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.79T + 37T^{2} \) |
| 41 | \( 1 + (-6.35 - 5.33i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (-9.07 + 3.30i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (-0.728 - 4.12i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + (1.62 + 0.590i)T + (40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (-1.96 + 11.1i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (-1.03 - 0.377i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (0.781 + 4.43i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (6.95 - 2.53i)T + (54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (5.48 + 4.60i)T + (12.6 + 71.8i)T^{2} \) |
| 79 | \( 1 + (-2.27 - 1.90i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (-5.31 - 9.20i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.63 + 1.37i)T + (15.4 - 87.6i)T^{2} \) |
| 97 | \( 1 + (1.46 - 8.30i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43327811372038136305097453001, −10.77829633268014740790740902780, −9.481214474950452303174196163941, −8.219684641069664931413429674260, −7.57595327515206972914889500530, −6.15442054851177742452176463731, −5.65384085946100672880480675844, −4.95318115746292254221754387691, −2.48471248123406263251746602988, −1.25054334959559957789252632942,
1.12117292142370320334710521878, 3.87467113004121336860686159177, 4.35690901188200451279198574283, 5.60229958346992836299760511786, 6.35157908341489345120051325477, 7.53360482306108254343067350432, 8.887883863077098615001608425155, 9.980638563810413139358736182926, 10.71698273796814326738912858039, 11.09177422970743790775679918854