Properties

Label 6-3800e3-152.37-c0e3-0-0
Degree $6$
Conductor $54872000000$
Sign $1$
Analytic cond. $6.82059$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 6·4-s − 10·8-s + 15·16-s − 3·19-s + 27-s − 21·32-s + 3·37-s + 9·38-s − 3·47-s − 3·54-s + 28·64-s − 9·74-s − 18·76-s + 9·94-s + 6·108-s + 3·121-s + 127-s − 36·128-s + 131-s + 137-s + 139-s + 18·148-s + 149-s + 151-s + 30·152-s + 157-s + ⋯
L(s)  = 1  − 3·2-s + 6·4-s − 10·8-s + 15·16-s − 3·19-s + 27-s − 21·32-s + 3·37-s + 9·38-s − 3·47-s − 3·54-s + 28·64-s − 9·74-s − 18·76-s + 9·94-s + 6·108-s + 3·121-s + 127-s − 36·128-s + 131-s + 137-s + 139-s + 18·148-s + 149-s + 151-s + 30·152-s + 157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 5^{6} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{9} \cdot 5^{6} \cdot 19^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{9} \cdot 5^{6} \cdot 19^{3}\)
Sign: $1$
Analytic conductor: \(6.82059\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: induced by $\chi_{3800} (1101, \cdot )$
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{9} \cdot 5^{6} \cdot 19^{3} ,\ ( \ : 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3182338573\)
\(L(\frac12)\) \(\approx\) \(0.3182338573\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{3} \)
5 \( 1 \)
19$C_1$ \( ( 1 + T )^{3} \)
good3$C_6$ \( 1 - T^{3} + T^{6} \)
7$C_6$ \( 1 + T^{3} + T^{6} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
13$C_6$ \( 1 - T^{3} + T^{6} \)
17$C_6$ \( 1 + T^{3} + T^{6} \)
23$C_6$ \( 1 + T^{3} + T^{6} \)
29$C_6$ \( 1 - T^{3} + T^{6} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
37$C_2$ \( ( 1 - T + T^{2} )^{3} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
43$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
47$C_2$ \( ( 1 + T + T^{2} )^{3} \)
53$C_6$ \( 1 - T^{3} + T^{6} \)
59$C_6$ \( 1 - T^{3} + T^{6} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
67$C_6$ \( 1 - T^{3} + T^{6} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
73$C_6$ \( 1 + T^{3} + T^{6} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
97$C_1$$\times$$C_1$ \( ( 1 - T )^{3}( 1 + T )^{3} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.920433166717209397823752313459, −7.74696446579968495356410257820, −7.22259940738282807331510472649, −6.94738330976620738177121407657, −6.93300801448237260386046237234, −6.57910072727121896937510160842, −6.32276338722519711534820452520, −6.23220699731047492022741219470, −5.89163009425620121811726394799, −5.87858761736417789078448667577, −5.29325736723530133678251333539, −4.98360230009489519366366666265, −4.61408884470067770113623007625, −4.33720108578422471704685902859, −3.91515814680727749871202078643, −3.74698871582306586024589522387, −3.01541659037606063468058618145, −2.97525884109578343826211530157, −2.84304511510068920946380533510, −2.29358438037025803274176720683, −2.03319230706837636392119405231, −1.73590910442619845156342712456, −1.55059409854462001210166804268, −0.790026702321987899437065594714, −0.53475195151724166465600046100, 0.53475195151724166465600046100, 0.790026702321987899437065594714, 1.55059409854462001210166804268, 1.73590910442619845156342712456, 2.03319230706837636392119405231, 2.29358438037025803274176720683, 2.84304511510068920946380533510, 2.97525884109578343826211530157, 3.01541659037606063468058618145, 3.74698871582306586024589522387, 3.91515814680727749871202078643, 4.33720108578422471704685902859, 4.61408884470067770113623007625, 4.98360230009489519366366666265, 5.29325736723530133678251333539, 5.87858761736417789078448667577, 5.89163009425620121811726394799, 6.23220699731047492022741219470, 6.32276338722519711534820452520, 6.57910072727121896937510160842, 6.93300801448237260386046237234, 6.94738330976620738177121407657, 7.22259940738282807331510472649, 7.74696446579968495356410257820, 7.920433166717209397823752313459

Graph of the $Z$-function along the critical line