L(s) = 1 | − 3·2-s + 6·4-s − 10·8-s + 15·16-s − 3·19-s + 27-s − 21·32-s + 3·37-s + 9·38-s − 3·47-s − 3·54-s + 28·64-s − 9·74-s − 18·76-s + 9·94-s + 6·108-s + 3·121-s + 127-s − 36·128-s + 131-s + 137-s + 139-s + 18·148-s + 149-s + 151-s + 30·152-s + 157-s + ⋯ |
L(s) = 1 | − 3·2-s + 6·4-s − 10·8-s + 15·16-s − 3·19-s + 27-s − 21·32-s + 3·37-s + 9·38-s − 3·47-s − 3·54-s + 28·64-s − 9·74-s − 18·76-s + 9·94-s + 6·108-s + 3·121-s + 127-s − 36·128-s + 131-s + 137-s + 139-s + 18·148-s + 149-s + 151-s + 30·152-s + 157-s + ⋯ |
Λ(s)=(=((29⋅56⋅193)s/2ΓC(s)3L(s)Λ(1−s)
Λ(s)=(=((29⋅56⋅193)s/2ΓC(s)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
29⋅56⋅193
|
Sign: |
1
|
Analytic conductor: |
6.82059 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
induced by χ3800(1101,⋅)
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 29⋅56⋅193, ( :0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.3182338573 |
L(21) |
≈ |
0.3182338573 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1+T)3 |
| 5 | | 1 |
| 19 | C1 | (1+T)3 |
good | 3 | C6 | 1−T3+T6 |
| 7 | C6 | 1+T3+T6 |
| 11 | C1×C1 | (1−T)3(1+T)3 |
| 13 | C6 | 1−T3+T6 |
| 17 | C6 | 1+T3+T6 |
| 23 | C6 | 1+T3+T6 |
| 29 | C6 | 1−T3+T6 |
| 31 | C1×C1 | (1−T)3(1+T)3 |
| 37 | C2 | (1−T+T2)3 |
| 41 | C1×C1 | (1−T)3(1+T)3 |
| 43 | C1×C1 | (1−T)3(1+T)3 |
| 47 | C2 | (1+T+T2)3 |
| 53 | C6 | 1−T3+T6 |
| 59 | C6 | 1−T3+T6 |
| 61 | C1×C1 | (1−T)3(1+T)3 |
| 67 | C6 | 1−T3+T6 |
| 71 | C1×C1 | (1−T)3(1+T)3 |
| 73 | C6 | 1+T3+T6 |
| 79 | C1×C1 | (1−T)3(1+T)3 |
| 83 | C1×C1 | (1−T)3(1+T)3 |
| 89 | C1×C1 | (1−T)3(1+T)3 |
| 97 | C1×C1 | (1−T)3(1+T)3 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.920433166717209397823752313459, −7.74696446579968495356410257820, −7.22259940738282807331510472649, −6.94738330976620738177121407657, −6.93300801448237260386046237234, −6.57910072727121896937510160842, −6.32276338722519711534820452520, −6.23220699731047492022741219470, −5.89163009425620121811726394799, −5.87858761736417789078448667577, −5.29325736723530133678251333539, −4.98360230009489519366366666265, −4.61408884470067770113623007625, −4.33720108578422471704685902859, −3.91515814680727749871202078643, −3.74698871582306586024589522387, −3.01541659037606063468058618145, −2.97525884109578343826211530157, −2.84304511510068920946380533510, −2.29358438037025803274176720683, −2.03319230706837636392119405231, −1.73590910442619845156342712456, −1.55059409854462001210166804268, −0.790026702321987899437065594714, −0.53475195151724166465600046100,
0.53475195151724166465600046100, 0.790026702321987899437065594714, 1.55059409854462001210166804268, 1.73590910442619845156342712456, 2.03319230706837636392119405231, 2.29358438037025803274176720683, 2.84304511510068920946380533510, 2.97525884109578343826211530157, 3.01541659037606063468058618145, 3.74698871582306586024589522387, 3.91515814680727749871202078643, 4.33720108578422471704685902859, 4.61408884470067770113623007625, 4.98360230009489519366366666265, 5.29325736723530133678251333539, 5.87858761736417789078448667577, 5.89163009425620121811726394799, 6.23220699731047492022741219470, 6.32276338722519711534820452520, 6.57910072727121896937510160842, 6.93300801448237260386046237234, 6.94738330976620738177121407657, 7.22259940738282807331510472649, 7.74696446579968495356410257820, 7.920433166717209397823752313459