L(s) = 1 | + (0.382 − 0.923i)2-s + 1.84·3-s + (−0.707 − 0.707i)4-s + (0.707 − 1.70i)6-s + (−0.923 + 0.382i)8-s + 2.41·9-s + 1.41i·11-s + (−1.30 − 1.30i)12-s + 0.765·13-s + i·16-s + (0.923 − 2.23i)18-s − i·19-s + (1.30 + 0.541i)22-s + (−1.70 + 0.707i)24-s + (0.292 − 0.707i)26-s + 2.61·27-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)2-s + 1.84·3-s + (−0.707 − 0.707i)4-s + (0.707 − 1.70i)6-s + (−0.923 + 0.382i)8-s + 2.41·9-s + 1.41i·11-s + (−1.30 − 1.30i)12-s + 0.765·13-s + i·16-s + (0.923 − 2.23i)18-s − i·19-s + (1.30 + 0.541i)22-s + (−1.70 + 0.707i)24-s + (0.292 − 0.707i)26-s + 2.61·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.830887617\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.830887617\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 + 0.923i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 1.84T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - 1.41iT - T^{2} \) |
| 13 | \( 1 - 0.765T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + 1.84T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 1.84T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + 1.41iT - T^{2} \) |
| 67 | \( 1 - 0.765T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 0.765iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.638301129172775102737270931588, −8.113637942878325027280875805355, −7.17018294709930161992722496362, −6.50499874624353533460016946167, −5.06255089721723305546171957829, −4.48059131645615754939940392084, −3.64473176446447483324545418151, −3.04453720770457470568375216167, −2.11982514932773217352444826942, −1.54463113061535235245841511351,
1.50711970670807164268213917037, 2.85398583604329477404047887834, 3.50738307903992242220646157842, 3.91965350346931360812277424888, 5.02551103126484873641973915024, 5.99660213745261177032376074684, 6.68394701764801132248834245649, 7.58094127778790936452492461395, 8.159407116191031498226739870339, 8.595911731452791349553838536898