L(s) = 1 | + (0.382 + 0.923i)2-s + 1.84·3-s + (−0.707 + 0.707i)4-s + (0.707 + 1.70i)6-s + (−0.923 − 0.382i)8-s + 2.41·9-s − 1.41i·11-s + (−1.30 + 1.30i)12-s + 0.765·13-s − i·16-s + (0.923 + 2.23i)18-s + i·19-s + (1.30 − 0.541i)22-s + (−1.70 − 0.707i)24-s + (0.292 + 0.707i)26-s + 2.61·27-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)2-s + 1.84·3-s + (−0.707 + 0.707i)4-s + (0.707 + 1.70i)6-s + (−0.923 − 0.382i)8-s + 2.41·9-s − 1.41i·11-s + (−1.30 + 1.30i)12-s + 0.765·13-s − i·16-s + (0.923 + 2.23i)18-s + i·19-s + (1.30 − 0.541i)22-s + (−1.70 − 0.707i)24-s + (0.292 + 0.707i)26-s + 2.61·27-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.382−0.923i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.382−0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.382−0.923i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), 0.382−0.923i)
|
Particular Values
L(21) |
≈ |
2.830887617 |
L(21) |
≈ |
2.830887617 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.382−0.923i)T |
| 5 | 1 |
| 19 | 1−iT |
good | 3 | 1−1.84T+T2 |
| 7 | 1+T2 |
| 11 | 1+1.41iT−T2 |
| 13 | 1−0.765T+T2 |
| 17 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1+1.84T+T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1+1.84T+T2 |
| 59 | 1+T2 |
| 61 | 1−1.41iT−T2 |
| 67 | 1−0.765T+T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1+0.765iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.595911731452791349553838536898, −8.159407116191031498226739870339, −7.58094127778790936452492461395, −6.68394701764801132248834245649, −5.99660213745261177032376074684, −5.02551103126484873641973915024, −3.91965350346931360812277424888, −3.50738307903992242220646157842, −2.85398583604329477404047887834, −1.50711970670807164268213917037,
1.54463113061535235245841511351, 2.11982514932773217352444826942, 3.04453720770457470568375216167, 3.64473176446447483324545418151, 4.48059131645615754939940392084, 5.06255089721723305546171957829, 6.50499874624353533460016946167, 7.17018294709930161992722496362, 8.113637942878325027280875805355, 8.638301129172775102737270931588