L(s) = 1 | − 2·3-s − 4·7-s + 9-s − 4·11-s − 6·17-s − 19-s + 8·21-s − 8·23-s + 4·27-s − 6·29-s − 8·31-s + 8·33-s + 8·37-s − 2·41-s − 12·47-s + 9·49-s + 12·51-s − 4·53-s + 2·57-s + 8·59-s − 14·61-s − 4·63-s + 2·67-s + 16·69-s − 8·71-s + 2·73-s + 16·77-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.51·7-s + 1/3·9-s − 1.20·11-s − 1.45·17-s − 0.229·19-s + 1.74·21-s − 1.66·23-s + 0.769·27-s − 1.11·29-s − 1.43·31-s + 1.39·33-s + 1.31·37-s − 0.312·41-s − 1.75·47-s + 9/7·49-s + 1.68·51-s − 0.549·53-s + 0.264·57-s + 1.04·59-s − 1.79·61-s − 0.503·63-s + 0.244·67-s + 1.92·69-s − 0.949·71-s + 0.234·73-s + 1.82·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 - 8 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 4 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.62470289893142858386832135132, −6.80908432518756936618354991115, −6.14592282549616514227497069696, −5.74407064504463232184891340466, −4.84120948838482838961825282274, −3.95618695370658675261359121213, −2.97883240342003233168458959111, −2.01847348961705052302389167550, 0, 0,
2.01847348961705052302389167550, 2.97883240342003233168458959111, 3.95618695370658675261359121213, 4.84120948838482838961825282274, 5.74407064504463232184891340466, 6.14592282549616514227497069696, 6.80908432518756936618354991115, 7.62470289893142858386832135132