Properties

Label 2-3800-1.1-c1-0-80
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·7-s + 9-s + 4·11-s − 8·17-s − 19-s − 4·21-s − 6·23-s − 4·27-s + 2·29-s − 8·31-s + 8·33-s − 6·41-s − 10·43-s + 6·47-s − 3·49-s − 16·51-s − 2·57-s − 4·59-s + 6·61-s − 2·63-s − 2·67-s − 12·69-s + 16·71-s + 16·73-s − 8·77-s + 8·79-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.755·7-s + 1/3·9-s + 1.20·11-s − 1.94·17-s − 0.229·19-s − 0.872·21-s − 1.25·23-s − 0.769·27-s + 0.371·29-s − 1.43·31-s + 1.39·33-s − 0.937·41-s − 1.52·43-s + 0.875·47-s − 3/7·49-s − 2.24·51-s − 0.264·57-s − 0.520·59-s + 0.768·61-s − 0.251·63-s − 0.244·67-s − 1.44·69-s + 1.89·71-s + 1.87·73-s − 0.911·77-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 10 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.469728540263857067266533489637, −7.41058966894155131634628881747, −6.62595818791245239315944807189, −6.21201188263738619454982081460, −4.97583698028875659555901659715, −3.88431897566451080009871465277, −3.60746206388764900023445623206, −2.44452071063751805656793211256, −1.79356377999671719837344100709, 0, 1.79356377999671719837344100709, 2.44452071063751805656793211256, 3.60746206388764900023445623206, 3.88431897566451080009871465277, 4.97583698028875659555901659715, 6.21201188263738619454982081460, 6.62595818791245239315944807189, 7.41058966894155131634628881747, 8.469728540263857067266533489637

Graph of the $Z$-function along the critical line