Properties

Label 2-3800-1.1-c1-0-64
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.347·3-s − 3.41·7-s − 2.87·9-s + 2.41·11-s + 6.29·13-s − 2.34·17-s + 19-s − 1.18·21-s + 2.49·23-s − 2.04·27-s − 8.17·29-s − 2.77·31-s + 0.837·33-s − 0.977·37-s + 2.18·39-s − 3.49·41-s − 2.75·43-s + 6.29·47-s + 4.63·49-s − 0.815·51-s + 2.38·53-s + 0.347·57-s + 3.67·59-s − 12.7·61-s + 9.82·63-s + 2.41·67-s + 0.864·69-s + ⋯
L(s)  = 1  + 0.200·3-s − 1.28·7-s − 0.959·9-s + 0.727·11-s + 1.74·13-s − 0.569·17-s + 0.229·19-s − 0.258·21-s + 0.519·23-s − 0.392·27-s − 1.51·29-s − 0.498·31-s + 0.145·33-s − 0.160·37-s + 0.349·39-s − 0.545·41-s − 0.420·43-s + 0.917·47-s + 0.662·49-s − 0.114·51-s + 0.328·53-s + 0.0460·57-s + 0.478·59-s − 1.63·61-s + 1.23·63-s + 0.294·67-s + 0.104·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 0.347T + 3T^{2} \)
7 \( 1 + 3.41T + 7T^{2} \)
11 \( 1 - 2.41T + 11T^{2} \)
13 \( 1 - 6.29T + 13T^{2} \)
17 \( 1 + 2.34T + 17T^{2} \)
23 \( 1 - 2.49T + 23T^{2} \)
29 \( 1 + 8.17T + 29T^{2} \)
31 \( 1 + 2.77T + 31T^{2} \)
37 \( 1 + 0.977T + 37T^{2} \)
41 \( 1 + 3.49T + 41T^{2} \)
43 \( 1 + 2.75T + 43T^{2} \)
47 \( 1 - 6.29T + 47T^{2} \)
53 \( 1 - 2.38T + 53T^{2} \)
59 \( 1 - 3.67T + 59T^{2} \)
61 \( 1 + 12.7T + 61T^{2} \)
67 \( 1 - 2.41T + 67T^{2} \)
71 \( 1 - 4.51T + 71T^{2} \)
73 \( 1 - 1.81T + 73T^{2} \)
79 \( 1 + 5.04T + 79T^{2} \)
83 \( 1 + 8.07T + 83T^{2} \)
89 \( 1 + 2.94T + 89T^{2} \)
97 \( 1 + 3.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.326557700732181785331186957112, −7.30515312906735016620445692058, −6.51812414607771200458582306400, −6.03976435627965018324782052911, −5.31751480890423155789919971311, −3.90131940486388605497069420213, −3.55421250105112568367958548171, −2.66880638982154988135143913954, −1.40581723816416527127611914855, 0, 1.40581723816416527127611914855, 2.66880638982154988135143913954, 3.55421250105112568367958548171, 3.90131940486388605497069420213, 5.31751480890423155789919971311, 6.03976435627965018324782052911, 6.51812414607771200458582306400, 7.30515312906735016620445692058, 8.326557700732181785331186957112

Graph of the $Z$-function along the critical line