L(s) = 1 | − 0.486i·3-s + 3.63i·7-s + 2.76·9-s − 2.79·11-s − 2.86i·13-s + 1.17i·17-s − 19-s + 1.76·21-s + 0.617i·23-s − 2.80i·27-s + 4.96·29-s + 0.745·31-s + 1.36i·33-s + 8.23i·37-s − 1.39·39-s + ⋯ |
L(s) = 1 | − 0.280i·3-s + 1.37i·7-s + 0.921·9-s − 0.842·11-s − 0.794i·13-s + 0.284i·17-s − 0.229·19-s + 0.385·21-s + 0.128i·23-s − 0.539i·27-s + 0.922·29-s + 0.133·31-s + 0.236i·33-s + 1.35i·37-s − 0.223·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.723632572 |
L(21) |
≈ |
1.723632572 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1+0.486iT−3T2 |
| 7 | 1−3.63iT−7T2 |
| 11 | 1+2.79T+11T2 |
| 13 | 1+2.86iT−13T2 |
| 17 | 1−1.17iT−17T2 |
| 23 | 1−0.617iT−23T2 |
| 29 | 1−4.96T+29T2 |
| 31 | 1−0.745T+31T2 |
| 37 | 1−8.23iT−37T2 |
| 41 | 1−9.98T+41T2 |
| 43 | 1+10.4iT−43T2 |
| 47 | 1−5.07iT−47T2 |
| 53 | 1−7.45iT−53T2 |
| 59 | 1+3.83T+59T2 |
| 61 | 1−11.2T+61T2 |
| 67 | 1−6.10iT−67T2 |
| 71 | 1+9.40T+71T2 |
| 73 | 1−9.52iT−73T2 |
| 79 | 1−3.70T+79T2 |
| 83 | 1−4.66iT−83T2 |
| 89 | 1+10.6T+89T2 |
| 97 | 1−0.629iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.505275648169241149557266855510, −7.978399692635477727106517732481, −7.22200227210071217793561255222, −6.33295002879587551071303461953, −5.65840528633260754015762968515, −4.99440419626286979827565832039, −4.07535121098109295322587538063, −2.86076881234757663339605883219, −2.32453926498949642698190028562, −1.09840946982056016654984022510,
0.56813902125953105382665538383, 1.71796565932186849500069916082, 2.87699558615811092931288419089, 4.00289113695906207005620083935, 4.38150076578341967162192774991, 5.17270831461869661792096266459, 6.30496450022956417834707552311, 7.01680772205473941745298691743, 7.53781232072267666847099064965, 8.234325372952187047085370066715