Properties

Label 2-3800-5.4-c1-0-60
Degree $2$
Conductor $3800$
Sign $0.447 + 0.894i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.848i·3-s + 1.74i·7-s + 2.28·9-s + 5.92·11-s − 6.78i·13-s + 1.86i·17-s + 19-s + 1.48·21-s − 5.94i·23-s − 4.47i·27-s − 3.29·29-s − 5.75·31-s − 5.02i·33-s − 4.36i·37-s − 5.75·39-s + ⋯
L(s)  = 1  − 0.489i·3-s + 0.659i·7-s + 0.760·9-s + 1.78·11-s − 1.88i·13-s + 0.451i·17-s + 0.229·19-s + 0.322·21-s − 1.23i·23-s − 0.862i·27-s − 0.612·29-s − 1.03·31-s − 0.874i·33-s − 0.717i·37-s − 0.921·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.270915742\)
\(L(\frac12)\) \(\approx\) \(2.270915742\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 0.848iT - 3T^{2} \)
7 \( 1 - 1.74iT - 7T^{2} \)
11 \( 1 - 5.92T + 11T^{2} \)
13 \( 1 + 6.78iT - 13T^{2} \)
17 \( 1 - 1.86iT - 17T^{2} \)
23 \( 1 + 5.94iT - 23T^{2} \)
29 \( 1 + 3.29T + 29T^{2} \)
31 \( 1 + 5.75T + 31T^{2} \)
37 \( 1 + 4.36iT - 37T^{2} \)
41 \( 1 - 7.12T + 41T^{2} \)
43 \( 1 - 6.98iT - 43T^{2} \)
47 \( 1 + 4.02iT - 47T^{2} \)
53 \( 1 - 9.19iT - 53T^{2} \)
59 \( 1 + 2.51T + 59T^{2} \)
61 \( 1 + 2.49T + 61T^{2} \)
67 \( 1 - 6.90iT - 67T^{2} \)
71 \( 1 - 1.27T + 71T^{2} \)
73 \( 1 + 12.1iT - 73T^{2} \)
79 \( 1 - 13.8T + 79T^{2} \)
83 \( 1 - 4.94iT - 83T^{2} \)
89 \( 1 + 15.6T + 89T^{2} \)
97 \( 1 + 15.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.324655027614379535576030737199, −7.60869879361256874068967772749, −6.93046094990278175217397234404, −6.08716290866800015680594243099, −5.63440434947250956652456405853, −4.46613191150594795364263193140, −3.74390137480486905519075226980, −2.74812043531637632592192925961, −1.69903707499535586907531091451, −0.75878320751210343692317020396, 1.22105117527398968286102999411, 1.91303258702036406006892527806, 3.60018044465088418457920987096, 3.96796751526747506118423040006, 4.58887128385372017041781616548, 5.60095463038775083830483832420, 6.80304683040596534375394544574, 6.87712206170750253262522843812, 7.74511386516323201435774703777, 9.014812229529090606949252830806

Graph of the $Z$-function along the critical line