L(s) = 1 | − 0.848i·3-s + 1.74i·7-s + 2.28·9-s + 5.92·11-s − 6.78i·13-s + 1.86i·17-s + 19-s + 1.48·21-s − 5.94i·23-s − 4.47i·27-s − 3.29·29-s − 5.75·31-s − 5.02i·33-s − 4.36i·37-s − 5.75·39-s + ⋯ |
L(s) = 1 | − 0.489i·3-s + 0.659i·7-s + 0.760·9-s + 1.78·11-s − 1.88i·13-s + 0.451i·17-s + 0.229·19-s + 0.322·21-s − 1.23i·23-s − 0.862i·27-s − 0.612·29-s − 1.03·31-s − 0.874i·33-s − 0.717i·37-s − 0.921·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
2.270915742 |
L(21) |
≈ |
2.270915742 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+0.848iT−3T2 |
| 7 | 1−1.74iT−7T2 |
| 11 | 1−5.92T+11T2 |
| 13 | 1+6.78iT−13T2 |
| 17 | 1−1.86iT−17T2 |
| 23 | 1+5.94iT−23T2 |
| 29 | 1+3.29T+29T2 |
| 31 | 1+5.75T+31T2 |
| 37 | 1+4.36iT−37T2 |
| 41 | 1−7.12T+41T2 |
| 43 | 1−6.98iT−43T2 |
| 47 | 1+4.02iT−47T2 |
| 53 | 1−9.19iT−53T2 |
| 59 | 1+2.51T+59T2 |
| 61 | 1+2.49T+61T2 |
| 67 | 1−6.90iT−67T2 |
| 71 | 1−1.27T+71T2 |
| 73 | 1+12.1iT−73T2 |
| 79 | 1−13.8T+79T2 |
| 83 | 1−4.94iT−83T2 |
| 89 | 1+15.6T+89T2 |
| 97 | 1+15.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.324655027614379535576030737199, −7.60869879361256874068967772749, −6.93046094990278175217397234404, −6.08716290866800015680594243099, −5.63440434947250956652456405853, −4.46613191150594795364263193140, −3.74390137480486905519075226980, −2.74812043531637632592192925961, −1.69903707499535586907531091451, −0.75878320751210343692317020396,
1.22105117527398968286102999411, 1.91303258702036406006892527806, 3.60018044465088418457920987096, 3.96796751526747506118423040006, 4.58887128385372017041781616548, 5.60095463038775083830483832420, 6.80304683040596534375394544574, 6.87712206170750253262522843812, 7.74511386516323201435774703777, 9.014812229529090606949252830806