L(s) = 1 | + (0.156 + 0.987i)2-s + (0.431 + 0.178i)3-s + (−0.951 + 0.309i)4-s + (−0.0600 − 0.144i)5-s + (−0.108 + 0.453i)6-s + (0.707 − 0.707i)7-s + (−0.453 − 0.891i)8-s + (−0.552 − 0.552i)9-s + (0.133 − 0.0819i)10-s + (−0.465 − 0.0366i)12-s + (0.809 + 0.587i)14-s − 0.0732i·15-s + (0.809 − 0.587i)16-s + i·17-s + (0.459 − 0.632i)18-s + ⋯ |
L(s) = 1 | + (0.156 + 0.987i)2-s + (0.431 + 0.178i)3-s + (−0.951 + 0.309i)4-s + (−0.0600 − 0.144i)5-s + (−0.108 + 0.453i)6-s + (0.707 − 0.707i)7-s + (−0.453 − 0.891i)8-s + (−0.552 − 0.552i)9-s + (0.133 − 0.0819i)10-s + (−0.465 − 0.0366i)12-s + (0.809 + 0.587i)14-s − 0.0732i·15-s + (0.809 − 0.587i)16-s + i·17-s + (0.459 − 0.632i)18-s + ⋯ |
Λ(s)=(=(3808s/2ΓC(s)L(s)(0.831−0.555i)Λ(1−s)
Λ(s)=(=(3808s/2ΓC(s)L(s)(0.831−0.555i)Λ(1−s)
Degree: |
2 |
Conductor: |
3808
= 25⋅7⋅17
|
Sign: |
0.831−0.555i
|
Analytic conductor: |
1.90043 |
Root analytic conductor: |
1.37856 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3808(2141,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3808, ( :0), 0.831−0.555i)
|
Particular Values
L(21) |
≈ |
1.457066281 |
L(21) |
≈ |
1.457066281 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.156−0.987i)T |
| 7 | 1+(−0.707+0.707i)T |
| 17 | 1−iT |
good | 3 | 1+(−0.431−0.178i)T+(0.707+0.707i)T2 |
| 5 | 1+(0.0600+0.144i)T+(−0.707+0.707i)T2 |
| 11 | 1+(−0.707+0.707i)T2 |
| 13 | 1+(0.707+0.707i)T2 |
| 19 | 1+(0.707+0.707i)T2 |
| 23 | 1−iT2 |
| 29 | 1+(−0.707−0.707i)T2 |
| 31 | 1−0.618T+T2 |
| 37 | 1+(0.707−0.707i)T2 |
| 41 | 1+(1.14+1.14i)T+iT2 |
| 43 | 1+(−1.57+0.652i)T+(0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(−1.40+0.581i)T+(0.707−0.707i)T2 |
| 59 | 1+(0.707−0.707i)T2 |
| 61 | 1+(−1.79−0.744i)T+(0.707+0.707i)T2 |
| 67 | 1+(−1.20−0.497i)T+(0.707+0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1+(−0.221−0.221i)T+iT2 |
| 79 | 1+T2 |
| 83 | 1+(0.707+0.707i)T2 |
| 89 | 1+iT2 |
| 97 | 1+0.907T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.409394323907232438414931847669, −8.256584426313307907552888885685, −7.21447583489220768547407785535, −6.65833715354765458922270208680, −5.75172627033416960371049091879, −5.08134272166875999838634019705, −4.03595801478624944567091455210, −3.77601627187836899467480544568, −2.46662153128984277658460740372, −0.876310951112494298634045757971,
1.25061755204699369555888629357, 2.40524743672256137011116841790, 2.77091021599380360582694792293, 3.80312083762382190838890465070, 4.96603081721109267159462794583, 5.20032903992918423734641365957, 6.22698090917270415767630985565, 7.37858735152002197810473691779, 8.119482517484595697113128409814, 8.685014678482404911651142867152