Properties

Label 2-3825-1.1-c1-0-25
Degree $2$
Conductor $3825$
Sign $1$
Analytic cond. $30.5427$
Root an. cond. $5.52655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.31·2-s + 3.36·4-s + 0.683·7-s − 3.16·8-s − 3.68·11-s + 4.43·13-s − 1.58·14-s + 0.593·16-s + 17-s − 1.03·19-s + 8.52·22-s + 4.52·23-s − 10.2·26-s + 2.30·28-s + 3.69·29-s − 10.8·31-s + 4.94·32-s − 2.31·34-s + 0.308·37-s + 2.40·38-s + 6.15·41-s + 7.88·43-s − 12.3·44-s − 10.4·46-s − 4.43·47-s − 6.53·49-s + 14.9·52-s + ⋯
L(s)  = 1  − 1.63·2-s + 1.68·4-s + 0.258·7-s − 1.11·8-s − 1.10·11-s + 1.23·13-s − 0.423·14-s + 0.148·16-s + 0.242·17-s − 0.238·19-s + 1.81·22-s + 0.943·23-s − 2.01·26-s + 0.434·28-s + 0.685·29-s − 1.95·31-s + 0.874·32-s − 0.397·34-s + 0.0507·37-s + 0.390·38-s + 0.960·41-s + 1.20·43-s − 1.86·44-s − 1.54·46-s − 0.647·47-s − 0.933·49-s + 2.07·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3825\)    =    \(3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(30.5427\)
Root analytic conductor: \(5.52655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3825,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7762459471\)
\(L(\frac12)\) \(\approx\) \(0.7762459471\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good2 \( 1 + 2.31T + 2T^{2} \)
7 \( 1 - 0.683T + 7T^{2} \)
11 \( 1 + 3.68T + 11T^{2} \)
13 \( 1 - 4.43T + 13T^{2} \)
19 \( 1 + 1.03T + 19T^{2} \)
23 \( 1 - 4.52T + 23T^{2} \)
29 \( 1 - 3.69T + 29T^{2} \)
31 \( 1 + 10.8T + 31T^{2} \)
37 \( 1 - 0.308T + 37T^{2} \)
41 \( 1 - 6.15T + 41T^{2} \)
43 \( 1 - 7.88T + 43T^{2} \)
47 \( 1 + 4.43T + 47T^{2} \)
53 \( 1 + 11.4T + 53T^{2} \)
59 \( 1 - 2T + 59T^{2} \)
61 \( 1 - 9.94T + 61T^{2} \)
67 \( 1 - 9.16T + 67T^{2} \)
71 \( 1 - 9.37T + 71T^{2} \)
73 \( 1 + 2.26T + 73T^{2} \)
79 \( 1 - 7.42T + 79T^{2} \)
83 \( 1 - 8.92T + 83T^{2} \)
89 \( 1 + 11.5T + 89T^{2} \)
97 \( 1 + 12.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.399312472115025014031573735527, −8.031623318067547917357286814059, −7.30228877160264245176305145483, −6.57253599896956989530308281551, −5.70293881582890574221269340396, −4.83802423080120728577736826120, −3.63191966119162799910998663584, −2.61547551428463010141248765546, −1.67172703414707151447265011646, −0.66956078201007422413541844219, 0.66956078201007422413541844219, 1.67172703414707151447265011646, 2.61547551428463010141248765546, 3.63191966119162799910998663584, 4.83802423080120728577736826120, 5.70293881582890574221269340396, 6.57253599896956989530308281551, 7.30228877160264245176305145483, 8.031623318067547917357286814059, 8.399312472115025014031573735527

Graph of the $Z$-function along the critical line