L(s) = 1 | + (−1.61 − 0.618i)3-s − 1.23i·5-s + 3.23i·7-s + (2.23 + 2.00i)9-s + 0.763·11-s + 4.47·13-s + (−0.763 + 2.00i)15-s − 6.47i·17-s − 5.23i·19-s + (2.00 − 5.23i)21-s + 6.47·23-s + 3.47·25-s + (−2.38 − 4.61i)27-s + 9.23i·29-s − 0.763i·31-s + ⋯ |
L(s) = 1 | + (−0.934 − 0.356i)3-s − 0.552i·5-s + 1.22i·7-s + (0.745 + 0.666i)9-s + 0.230·11-s + 1.24·13-s + (−0.197 + 0.516i)15-s − 1.56i·17-s − 1.20i·19-s + (0.436 − 1.14i)21-s + 1.34·23-s + 0.694·25-s + (−0.458 − 0.888i)27-s + 1.71i·29-s − 0.137i·31-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.934+0.356i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(0.934+0.356i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.934+0.356i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(383,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), 0.934+0.356i)
|
Particular Values
L(1) |
≈ |
1.07028−0.197449i |
L(21) |
≈ |
1.07028−0.197449i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.61+0.618i)T |
good | 5 | 1+1.23iT−5T2 |
| 7 | 1−3.23iT−7T2 |
| 11 | 1−0.763T+11T2 |
| 13 | 1−4.47T+13T2 |
| 17 | 1+6.47iT−17T2 |
| 19 | 1+5.23iT−19T2 |
| 23 | 1−6.47T+23T2 |
| 29 | 1−9.23iT−29T2 |
| 31 | 1+0.763iT−31T2 |
| 37 | 1+0.472T+37T2 |
| 41 | 1−2.47iT−41T2 |
| 43 | 1−2.76iT−43T2 |
| 47 | 1−8T+47T2 |
| 53 | 1+1.23iT−53T2 |
| 59 | 1−3.23T+59T2 |
| 61 | 1+8.47T+61T2 |
| 67 | 1−3.70iT−67T2 |
| 71 | 1+11.4T+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1+13.7iT−79T2 |
| 83 | 1−7.23T+83T2 |
| 89 | 1+4iT−89T2 |
| 97 | 1+8.47T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.39800771162205547392413200490, −10.68854169542896677749479178726, −9.084718219930451733045288532149, −8.884997237430113978137176093514, −7.32744672378307609304812102459, −6.46217092559972383772333794662, −5.36493042952581033648915175603, −4.78007082550275247062899098846, −2.86233646484382091941252710760, −1.11252385058558417766764830712,
1.21607159322177550095062969573, 3.61708637713807937652164434514, 4.25027968734526827701723628527, 5.79526940032163107620983650896, 6.49958337079848265010822460002, 7.44684296800419373091218472860, 8.642383833127025757401369485869, 9.958742619105365954791435361309, 10.70591091554262089597029801492, 10.99513743930460302127490586551