L(s) = 1 | + (−1.61 − 0.618i)3-s − 1.23i·5-s + 3.23i·7-s + (2.23 + 2.00i)9-s + 0.763·11-s + 4.47·13-s + (−0.763 + 2.00i)15-s − 6.47i·17-s − 5.23i·19-s + (2.00 − 5.23i)21-s + 6.47·23-s + 3.47·25-s + (−2.38 − 4.61i)27-s + 9.23i·29-s − 0.763i·31-s + ⋯ |
L(s) = 1 | + (−0.934 − 0.356i)3-s − 0.552i·5-s + 1.22i·7-s + (0.745 + 0.666i)9-s + 0.230·11-s + 1.24·13-s + (−0.197 + 0.516i)15-s − 1.56i·17-s − 1.20i·19-s + (0.436 − 1.14i)21-s + 1.34·23-s + 0.694·25-s + (−0.458 − 0.888i)27-s + 1.71i·29-s − 0.137i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.934 + 0.356i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.934 + 0.356i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07028 - 0.197449i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07028 - 0.197449i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.61 + 0.618i)T \) |
good | 5 | \( 1 + 1.23iT - 5T^{2} \) |
| 7 | \( 1 - 3.23iT - 7T^{2} \) |
| 11 | \( 1 - 0.763T + 11T^{2} \) |
| 13 | \( 1 - 4.47T + 13T^{2} \) |
| 17 | \( 1 + 6.47iT - 17T^{2} \) |
| 19 | \( 1 + 5.23iT - 19T^{2} \) |
| 23 | \( 1 - 6.47T + 23T^{2} \) |
| 29 | \( 1 - 9.23iT - 29T^{2} \) |
| 31 | \( 1 + 0.763iT - 31T^{2} \) |
| 37 | \( 1 + 0.472T + 37T^{2} \) |
| 41 | \( 1 - 2.47iT - 41T^{2} \) |
| 43 | \( 1 - 2.76iT - 43T^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 + 1.23iT - 53T^{2} \) |
| 59 | \( 1 - 3.23T + 59T^{2} \) |
| 61 | \( 1 + 8.47T + 61T^{2} \) |
| 67 | \( 1 - 3.70iT - 67T^{2} \) |
| 71 | \( 1 + 11.4T + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 + 13.7iT - 79T^{2} \) |
| 83 | \( 1 - 7.23T + 83T^{2} \) |
| 89 | \( 1 + 4iT - 89T^{2} \) |
| 97 | \( 1 + 8.47T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39800771162205547392413200490, −10.68854169542896677749479178726, −9.084718219930451733045288532149, −8.884997237430113978137176093514, −7.32744672378307609304812102459, −6.46217092559972383772333794662, −5.36493042952581033648915175603, −4.78007082550275247062899098846, −2.86233646484382091941252710760, −1.11252385058558417766764830712,
1.21607159322177550095062969573, 3.61708637713807937652164434514, 4.25027968734526827701723628527, 5.79526940032163107620983650896, 6.49958337079848265010822460002, 7.44684296800419373091218472860, 8.642383833127025757401369485869, 9.958742619105365954791435361309, 10.70591091554262089597029801492, 10.99513743930460302127490586551