L(s) = 1 | + 12·3-s − 54·9-s − 536·11-s + 380·25-s − 2.05e3·27-s − 6.43e3·33-s − 6.72e3·49-s + 5.52e3·59-s + 1.95e4·73-s + 4.56e3·75-s − 8.82e3·81-s + 2.36e4·83-s + 2.34e4·97-s + 2.89e4·99-s − 8.50e4·107-s + 1.20e5·121-s + 127-s + 131-s + 137-s + 139-s − 8.06e4·147-s + 149-s + 151-s + 157-s + 163-s + 167-s − 9.31e4·169-s + ⋯ |
L(s) = 1 | + 4/3·3-s − 2/3·9-s − 4.42·11-s + 0.607·25-s − 2.81·27-s − 5.90·33-s − 2.80·49-s + 1.58·59-s + 3.67·73-s + 0.810·75-s − 1.34·81-s + 3.43·83-s + 2.49·97-s + 2.95·99-s − 7.43·107-s + 8.26·121-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s − 3.73·147-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s − 3.26·169-s + ⋯ |
Λ(s)=(=((228⋅34)s/2ΓC(s)4L(s)Λ(5−s)
Λ(s)=(=((228⋅34)s/2ΓC(s+2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅34
|
Sign: |
1
|
Analytic conductor: |
2.48257×106 |
Root analytic conductor: |
6.30032 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅34, ( :2,2,2,2), 1)
|
Particular Values
L(25) |
≈ |
0.5189364409 |
L(21) |
≈ |
0.5189364409 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1−2pT+p4T2)2 |
good | 5 | C22 | (1−38pT2+p8T4)2 |
| 7 | C22 | (1+3362T2+p8T4)2 |
| 11 | C2 | (1+134T+p4T2)4 |
| 13 | C22 | (1+46558T2+p8T4)2 |
| 17 | C22 | (1−110594T2+p8T4)2 |
| 19 | C22 | (1−18434T2+p8T4)2 |
| 23 | C22 | (1−144962T2+p8T4)2 |
| 29 | C22 | (1+779522T2+p8T4)2 |
| 31 | C22 | (1+636002T2+p8T4)2 |
| 37 | C22 | (1−1156322T2+p8T4)2 |
| 41 | C22 | (1−3988034T2+p8T4)2 |
| 43 | C22 | (1−6657602T2+p8T4)2 |
| 47 | C22 | (1−3123842T2+p8T4)2 |
| 53 | C22 | (1+13118402T2+p8T4)2 |
| 59 | C2 | (1−1382T+p4T2)4 |
| 61 | C22 | (1−27588002T2+p8T4)2 |
| 67 | C22 | (1−40267394T2+p8T4)2 |
| 71 | C22 | (1−47090882T2+p8T4)2 |
| 73 | C2 | (1−4894T+p4T2)4 |
| 79 | C22 | (1+75709922T2+p8T4)2 |
| 83 | C2 | (1−5914T+p4T2)4 |
| 89 | C2 | (1−146pT+p4T2)2(1+146pT+p4T2)2 |
| 97 | C2 | (1−5858T+p4T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.78332577230208700304679599811, −7.63010264034747106622935490636, −7.10430480391362138649301682272, −6.94236709201376229381263197796, −6.51188032419072245110733329907, −6.20249309461562686878591516958, −6.19745583611674279194586283094, −5.45946633727135401275480781455, −5.45125148743136476628050100445, −5.19985958850412922096076595441, −5.04777850826941420432333828960, −4.90323681184478135873501960048, −4.51948227567807503114102543737, −3.68890912417119097328602323510, −3.64851983149401973492872741171, −3.61305712144318260605117877105, −2.97404287040297724000134835028, −2.66718703119923065581349218555, −2.61632683857268691447442365977, −2.31973833912136690193194768659, −2.22808181711146725598583871078, −1.59186520771417424785865021970, −1.02888819555824534285800994232, −0.39269606082347173082454543518, −0.14272126131083889913452826852,
0.14272126131083889913452826852, 0.39269606082347173082454543518, 1.02888819555824534285800994232, 1.59186520771417424785865021970, 2.22808181711146725598583871078, 2.31973833912136690193194768659, 2.61632683857268691447442365977, 2.66718703119923065581349218555, 2.97404287040297724000134835028, 3.61305712144318260605117877105, 3.64851983149401973492872741171, 3.68890912417119097328602323510, 4.51948227567807503114102543737, 4.90323681184478135873501960048, 5.04777850826941420432333828960, 5.19985958850412922096076595441, 5.45125148743136476628050100445, 5.45946633727135401275480781455, 6.19745583611674279194586283094, 6.20249309461562686878591516958, 6.51188032419072245110733329907, 6.94236709201376229381263197796, 7.10430480391362138649301682272, 7.63010264034747106622935490636, 7.78332577230208700304679599811