L(s) = 1 | + (3 + 8.48i)3-s − 37.9·5-s + 37.9·7-s + (−62.9 + 50.9i)9-s − 134·11-s + 321. i·13-s + (−113. − 321. i)15-s − 237. i·17-s − 492. i·19-s + (113. + 321. i)21-s + 643. i·23-s + 815·25-s + (−620. − 381. i)27-s − 796.·29-s + 1.10e3·31-s + ⋯ |
L(s) = 1 | + (0.333 + 0.942i)3-s − 1.51·5-s + 0.774·7-s + (−0.777 + 0.628i)9-s − 1.10·11-s + 1.90i·13-s + (−0.505 − 1.43i)15-s − 0.822i·17-s − 1.36i·19-s + (0.258 + 0.730i)21-s + 1.21i·23-s + 1.30·25-s + (−0.851 − 0.523i)27-s − 0.947·29-s + 1.14·31-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.333+0.942i)Λ(5−s)
Λ(s)=(=(384s/2ΓC(s+2)L(s)(0.333+0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.333+0.942i
|
Analytic conductor: |
39.6940 |
Root analytic conductor: |
6.30032 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :2), 0.333+0.942i)
|
Particular Values
L(25) |
≈ |
0.4470895739 |
L(21) |
≈ |
0.4470895739 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−3−8.48i)T |
good | 5 | 1+37.9T+625T2 |
| 7 | 1−37.9T+2.40e3T2 |
| 11 | 1+134T+1.46e4T2 |
| 13 | 1−321.iT−2.85e4T2 |
| 17 | 1+237.iT−8.35e4T2 |
| 19 | 1+492.iT−1.30e5T2 |
| 23 | 1−643.iT−2.79e5T2 |
| 29 | 1+796.T+7.07e5T2 |
| 31 | 1−1.10e3T+9.23e5T2 |
| 37 | 1+1.60e3iT−1.87e6T2 |
| 41 | 1+1.28e3iT−2.82e6T2 |
| 43 | 1−424.iT−3.41e6T2 |
| 47 | 1+2.57e3iT−4.87e6T2 |
| 53 | 1−1.63e3T+7.89e6T2 |
| 59 | 1−1.38e3T+1.21e7T2 |
| 61 | 1−321.iT−1.38e7T2 |
| 67 | 1+186.iT−2.01e7T2 |
| 71 | 1+1.93e3iT−2.54e7T2 |
| 73 | 1−4.89e3T+2.83e7T2 |
| 79 | 1+1.47e3T+3.89e7T2 |
| 83 | 1−5.91e3T+4.74e7T2 |
| 89 | 1+9.06e3iT−6.27e7T2 |
| 97 | 1−5.85e3T+8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76483300978353835818409279021, −9.453009859167576410550801797758, −8.742160592726702767474757558586, −7.78332577230208700304679599811, −7.10430480391362138649301682272, −5.19985958850412922096076595441, −4.51948227567807503114102543737, −3.64851983149401973492872741171, −2.31973833912136690193194768659, −0.14272126131083889913452826852,
1.02888819555824534285800994232, 2.66718703119923065581349218555, 3.68890912417119097328602323510, 5.04777850826941420432333828960, 6.20249309461562686878591516958, 7.63010264034747106622935490636, 8.104528871911236134630492685676, 8.302918170253086314552140972825, 10.23536139450935246434569148596, 10.97962159588147097139061176581