L(s) = 1 | − 27·3-s + 514.·5-s + 1.60e3·7-s + 729·9-s − 6.91e3·11-s + 1.23e3·13-s − 1.38e4·15-s + 2.71e4·17-s + 4.41e4·19-s − 4.32e4·21-s − 1.55e4·23-s + 1.86e5·25-s − 1.96e4·27-s − 9.45e4·29-s + 9.79e4·31-s + 1.86e5·33-s + 8.23e5·35-s + 5.56e5·37-s − 3.34e4·39-s − 2.03e5·41-s − 5.95e4·43-s + 3.74e5·45-s − 6.98e5·47-s + 1.73e6·49-s − 7.32e5·51-s − 9.16e4·53-s − 3.55e6·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.84·5-s + 1.76·7-s + 0.333·9-s − 1.56·11-s + 0.156·13-s − 1.06·15-s + 1.33·17-s + 1.47·19-s − 1.01·21-s − 0.265·23-s + 2.38·25-s − 0.192·27-s − 0.720·29-s + 0.590·31-s + 0.904·33-s + 3.24·35-s + 1.80·37-s − 0.0902·39-s − 0.460·41-s − 0.114·43-s + 0.613·45-s − 0.981·47-s + 2.11·49-s − 0.772·51-s − 0.0845·53-s − 2.88·55-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)Λ(8−s)
Λ(s)=(=(384s/2ΓC(s+7/2)L(s)Λ(1−s)
Particular Values
L(4) |
≈ |
3.687844661 |
L(21) |
≈ |
3.687844661 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+27T |
good | 5 | 1−514.T+7.81e4T2 |
| 7 | 1−1.60e3T+8.23e5T2 |
| 11 | 1+6.91e3T+1.94e7T2 |
| 13 | 1−1.23e3T+6.27e7T2 |
| 17 | 1−2.71e4T+4.10e8T2 |
| 19 | 1−4.41e4T+8.93e8T2 |
| 23 | 1+1.55e4T+3.40e9T2 |
| 29 | 1+9.45e4T+1.72e10T2 |
| 31 | 1−9.79e4T+2.75e10T2 |
| 37 | 1−5.56e5T+9.49e10T2 |
| 41 | 1+2.03e5T+1.94e11T2 |
| 43 | 1+5.95e4T+2.71e11T2 |
| 47 | 1+6.98e5T+5.06e11T2 |
| 53 | 1+9.16e4T+1.17e12T2 |
| 59 | 1+1.47e6T+2.48e12T2 |
| 61 | 1−4.24e4T+3.14e12T2 |
| 67 | 1+7.22e5T+6.06e12T2 |
| 71 | 1−9.41e5T+9.09e12T2 |
| 73 | 1+2.12e6T+1.10e13T2 |
| 79 | 1−2.91e6T+1.92e13T2 |
| 83 | 1+5.42e6T+2.71e13T2 |
| 89 | 1−3.26e6T+4.42e13T2 |
| 97 | 1−3.55e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17336392269234139810622108345, −9.535452896378048749666869226196, −8.151459508458390675003002948264, −7.48117929704084284921628876282, −5.95369404784908382296830774469, −5.36712953585746690102311733656, −4.84059617212196700263392833672, −2.82648197022283686964580929431, −1.74962375568427336776693155228, −1.01271362503436043365370149704,
1.01271362503436043365370149704, 1.74962375568427336776693155228, 2.82648197022283686964580929431, 4.84059617212196700263392833672, 5.36712953585746690102311733656, 5.95369404784908382296830774469, 7.48117929704084284921628876282, 8.151459508458390675003002948264, 9.535452896378048749666869226196, 10.17336392269234139810622108345