L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s + (−1 − i)7-s + 1.00i·9-s − 1.41·11-s + 1.00i·15-s + 1.41i·21-s + 1.00i·25-s + (0.707 − 0.707i)27-s − 1.41·29-s + (1.00 + 1.00i)33-s + 1.41i·35-s + (0.707 − 0.707i)45-s + i·49-s + (1.41 − 1.41i)53-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s + (−1 − i)7-s + 1.00i·9-s − 1.41·11-s + 1.00i·15-s + 1.41i·21-s + 1.00i·25-s + (0.707 − 0.707i)27-s − 1.41·29-s + (1.00 + 1.00i)33-s + 1.41i·35-s + (0.707 − 0.707i)45-s + i·49-s + (1.41 − 1.41i)53-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.525−0.850i)Λ(1−s)
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.525−0.850i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
0.525−0.850i
|
Analytic conductor: |
1.91640 |
Root analytic conductor: |
1.38434 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(2303,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :0), 0.525−0.850i)
|
Particular Values
L(21) |
≈ |
0.1418964997 |
L(21) |
≈ |
0.1418964997 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.707+0.707i)T |
| 5 | 1+(0.707+0.707i)T |
good | 7 | 1+(1+i)T+iT2 |
| 11 | 1+1.41T+T2 |
| 13 | 1+iT2 |
| 17 | 1+iT2 |
| 19 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+1.41T+T2 |
| 31 | 1−T2 |
| 37 | 1−iT2 |
| 41 | 1−T2 |
| 43 | 1−iT2 |
| 47 | 1−iT2 |
| 53 | 1+(−1.41+1.41i)T−iT2 |
| 59 | 1−1.41iT−T2 |
| 61 | 1+T2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+(−1−i)T+iT2 |
| 79 | 1+T2 |
| 83 | 1+iT2 |
| 89 | 1+T2 |
| 97 | 1+(1−i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.567590256999021496499714759211, −7.84894924193560569017238493010, −7.32053554461701621740955088382, −6.76965564723351896655981742295, −5.71109969180679611295955930872, −5.18956083554128354429961786976, −4.24776924357716495338402229690, −3.44411546674206746126332692837, −2.28597611445949993884938697453, −0.915053585875729798530667157335,
0.11083515603850583116527908948, 2.38531818175852806652563158951, 3.14601656795937268743991551576, 3.83314349361459899363925217196, 4.86905661455494683552333515616, 5.63664737673803762005606925445, 6.16147523370628848105410247221, 7.01631656091592408685180313223, 7.73836138917316169352915302856, 8.643551936656958836002035600918