Properties

Label 2-3840-60.23-c0-0-0
Degree $2$
Conductor $3840$
Sign $0.525 - 0.850i$
Analytic cond. $1.91640$
Root an. cond. $1.38434$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s + (−1 − i)7-s + 1.00i·9-s − 1.41·11-s + 1.00i·15-s + 1.41i·21-s + 1.00i·25-s + (0.707 − 0.707i)27-s − 1.41·29-s + (1.00 + 1.00i)33-s + 1.41i·35-s + (0.707 − 0.707i)45-s + i·49-s + (1.41 − 1.41i)53-s + ⋯
L(s)  = 1  + (−0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s + (−1 − i)7-s + 1.00i·9-s − 1.41·11-s + 1.00i·15-s + 1.41i·21-s + 1.00i·25-s + (0.707 − 0.707i)27-s − 1.41·29-s + (1.00 + 1.00i)33-s + 1.41i·35-s + (0.707 − 0.707i)45-s + i·49-s + (1.41 − 1.41i)53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $0.525 - 0.850i$
Analytic conductor: \(1.91640\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3840} (2303, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :0),\ 0.525 - 0.850i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1418964997\)
\(L(\frac12)\) \(\approx\) \(0.1418964997\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.707 + 0.707i)T \)
5 \( 1 + (0.707 + 0.707i)T \)
good7 \( 1 + (1 + i)T + iT^{2} \)
11 \( 1 + 1.41T + T^{2} \)
13 \( 1 + iT^{2} \)
17 \( 1 + iT^{2} \)
19 \( 1 + T^{2} \)
23 \( 1 + iT^{2} \)
29 \( 1 + 1.41T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - iT^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 - iT^{2} \)
53 \( 1 + (-1.41 + 1.41i)T - iT^{2} \)
59 \( 1 - 1.41iT - T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 + iT^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + (-1 - i)T + iT^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + iT^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + (1 - i)T - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.567590256999021496499714759211, −7.84894924193560569017238493010, −7.32053554461701621740955088382, −6.76965564723351896655981742295, −5.71109969180679611295955930872, −5.18956083554128354429961786976, −4.24776924357716495338402229690, −3.44411546674206746126332692837, −2.28597611445949993884938697453, −0.915053585875729798530667157335, 0.11083515603850583116527908948, 2.38531818175852806652563158951, 3.14601656795937268743991551576, 3.83314349361459899363925217196, 4.86905661455494683552333515616, 5.63664737673803762005606925445, 6.16147523370628848105410247221, 7.01631656091592408685180313223, 7.73836138917316169352915302856, 8.643551936656958836002035600918

Graph of the $Z$-function along the critical line