L(s) = 1 | − 3-s + 5-s + 9-s − 15-s + 25-s − 27-s + 2·31-s + 45-s + 49-s − 2·53-s − 75-s − 2·79-s + 81-s + 2·83-s − 2·93-s + 2·107-s + ⋯ |
L(s) = 1 | − 3-s + 5-s + 9-s − 15-s + 25-s − 27-s + 2·31-s + 45-s + 49-s − 2·53-s − 75-s − 2·79-s + 81-s + 2·83-s − 2·93-s + 2·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.170584942\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.170584942\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
good | 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 + T )^{2} \) |
| 83 | \( ( 1 - T )^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.756955866766645499021262404197, −7.85108435974160185013086648709, −6.96635662582057277785423470625, −6.30982934812477082591843280667, −5.81662794753957581764697476036, −4.95790272273093413739439586113, −4.38864111141211319911419524222, −3.12560613795571978238219125556, −2.05425399675574092686423508599, −1.02468077780765774089259396945,
1.02468077780765774089259396945, 2.05425399675574092686423508599, 3.12560613795571978238219125556, 4.38864111141211319911419524222, 4.95790272273093413739439586113, 5.81662794753957581764697476036, 6.30982934812477082591843280667, 6.96635662582057277785423470625, 7.85108435974160185013086648709, 8.756955866766645499021262404197