L(s) = 1 | − i·3-s + i·5-s − 9-s + 15-s + 2·23-s − 25-s + i·27-s + 2i·29-s − 2i·43-s − i·45-s + 2·47-s + 49-s + 2i·67-s − 2i·69-s + i·75-s + ⋯ |
L(s) = 1 | − i·3-s + i·5-s − 9-s + 15-s + 2·23-s − 25-s + i·27-s + 2i·29-s − 2i·43-s − i·45-s + 2·47-s + 49-s + 2i·67-s − 2i·69-s + i·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.246669176\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.246669176\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - 2T + T^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 2iT - T^{2} \) |
| 47 | \( 1 - 2T + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - 2iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.815605378150077745176798134046, −7.65942888837444445613351455006, −7.01754204371703465944853018573, −6.84532313100644106640949245329, −5.73939792958227502205846794716, −5.19438549741416169212925607599, −3.82739626350198205000857293738, −2.99518096199693647980945657087, −2.31274370408054287204785803952, −1.12127492659843845001839173917,
0.861930269953059335073922232095, 2.35909283230605317562624558027, 3.31673430582043928500690988409, 4.32319360571361173591249317505, 4.71629996617010633646601937752, 5.58571706957251820920559843344, 6.17419229198896912771458489542, 7.35225521314762163027192921704, 8.131882253346117874243983537085, 8.803172252870795808587087045302