Properties

Label 2-3840-1.1-c1-0-5
Degree $2$
Conductor $3840$
Sign $1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 0.828·7-s + 9-s − 4.82·11-s − 2·13-s − 15-s − 5.65·17-s − 1.17·19-s − 0.828·21-s + 6.82·23-s + 25-s + 27-s + 6·29-s + 4·31-s − 4.82·33-s + 0.828·35-s − 3.65·37-s − 2·39-s + 7.65·41-s + 1.65·43-s − 45-s + 10.8·47-s − 6.31·49-s − 5.65·51-s + 13.3·53-s + 4.82·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.313·7-s + 0.333·9-s − 1.45·11-s − 0.554·13-s − 0.258·15-s − 1.37·17-s − 0.268·19-s − 0.180·21-s + 1.42·23-s + 0.200·25-s + 0.192·27-s + 1.11·29-s + 0.718·31-s − 0.840·33-s + 0.140·35-s − 0.601·37-s − 0.320·39-s + 1.19·41-s + 0.252·43-s − 0.149·45-s + 1.57·47-s − 0.901·49-s − 0.792·51-s + 1.82·53-s + 0.651·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.582783822\)
\(L(\frac12)\) \(\approx\) \(1.582783822\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
good7 \( 1 + 0.828T + 7T^{2} \)
11 \( 1 + 4.82T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 5.65T + 17T^{2} \)
19 \( 1 + 1.17T + 19T^{2} \)
23 \( 1 - 6.82T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 3.65T + 37T^{2} \)
41 \( 1 - 7.65T + 41T^{2} \)
43 \( 1 - 1.65T + 43T^{2} \)
47 \( 1 - 10.8T + 47T^{2} \)
53 \( 1 - 13.3T + 53T^{2} \)
59 \( 1 + 2.48T + 59T^{2} \)
61 \( 1 - 4T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 - 5.65T + 71T^{2} \)
73 \( 1 - 9.31T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 13.6T + 83T^{2} \)
89 \( 1 - 11.6T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.466281665337689554999685172513, −7.81750997955453101160926808680, −7.08302751521369008680522892424, −6.50263622406099209673595091136, −5.29846986803573329753187940041, −4.69976905520934099194864110916, −3.85479650163365616221820829952, −2.71734635423501771002740596717, −2.41292000118030871232243765753, −0.67790247892366330650954601368, 0.67790247892366330650954601368, 2.41292000118030871232243765753, 2.71734635423501771002740596717, 3.85479650163365616221820829952, 4.69976905520934099194864110916, 5.29846986803573329753187940041, 6.50263622406099209673595091136, 7.08302751521369008680522892424, 7.81750997955453101160926808680, 8.466281665337689554999685172513

Graph of the $Z$-function along the critical line