Properties

Label 2-3840-1.1-c1-0-54
Degree $2$
Conductor $3840$
Sign $-1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 4.82·7-s + 9-s + 0.828·11-s + 2·13-s + 15-s + 5.65·17-s − 6.82·19-s − 4.82·21-s − 1.17·23-s + 25-s + 27-s − 6·29-s − 4·31-s + 0.828·33-s − 4.82·35-s − 7.65·37-s + 2·39-s − 3.65·41-s − 9.65·43-s + 45-s − 5.17·47-s + 16.3·49-s + 5.65·51-s + 9.31·53-s + 0.828·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.82·7-s + 0.333·9-s + 0.249·11-s + 0.554·13-s + 0.258·15-s + 1.37·17-s − 1.56·19-s − 1.05·21-s − 0.244·23-s + 0.200·25-s + 0.192·27-s − 1.11·29-s − 0.718·31-s + 0.144·33-s − 0.816·35-s − 1.25·37-s + 0.320·39-s − 0.571·41-s − 1.47·43-s + 0.149·45-s − 0.754·47-s + 2.33·49-s + 0.792·51-s + 1.27·53-s + 0.111·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
good7 \( 1 + 4.82T + 7T^{2} \)
11 \( 1 - 0.828T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 5.65T + 17T^{2} \)
19 \( 1 + 6.82T + 19T^{2} \)
23 \( 1 + 1.17T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 + 7.65T + 37T^{2} \)
41 \( 1 + 3.65T + 41T^{2} \)
43 \( 1 + 9.65T + 43T^{2} \)
47 \( 1 + 5.17T + 47T^{2} \)
53 \( 1 - 9.31T + 53T^{2} \)
59 \( 1 - 14.4T + 59T^{2} \)
61 \( 1 + 4T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 - 5.65T + 71T^{2} \)
73 \( 1 + 13.3T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 2.34T + 83T^{2} \)
89 \( 1 - 0.343T + 89T^{2} \)
97 \( 1 + 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.353928403589865262204718743251, −7.20645523713973161029720978273, −6.68967407576349151280366566906, −5.99077263816598197128166679878, −5.28678265527901992328333751890, −3.80506209521218478110385258156, −3.58721319899676426299426398163, −2.58981933385541535918782042168, −1.56778293428891148188984382172, 0, 1.56778293428891148188984382172, 2.58981933385541535918782042168, 3.58721319899676426299426398163, 3.80506209521218478110385258156, 5.28678265527901992328333751890, 5.99077263816598197128166679878, 6.68967407576349151280366566906, 7.20645523713973161029720978273, 8.353928403589865262204718743251

Graph of the $Z$-function along the critical line