L(s) = 1 | − 3-s + 5-s + 3.62·7-s + 9-s − 6.20·11-s − 0.578·13-s − 15-s + 1.42·17-s − 5.62·19-s − 3.62·21-s + 5.62·23-s + 25-s − 27-s + 2·29-s − 2.57·31-s + 6.20·33-s + 3.62·35-s + 7.83·37-s + 0.578·39-s − 5.25·41-s + 7.25·43-s + 45-s + 6.78·47-s + 6.15·49-s − 1.42·51-s + 2·53-s − 6.20·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.447·5-s + 1.37·7-s + 0.333·9-s − 1.87·11-s − 0.160·13-s − 0.258·15-s + 0.344·17-s − 1.29·19-s − 0.791·21-s + 1.17·23-s + 0.200·25-s − 0.192·27-s + 0.371·29-s − 0.463·31-s + 1.08·33-s + 0.613·35-s + 1.28·37-s + 0.0926·39-s − 0.820·41-s + 1.10·43-s + 0.149·45-s + 0.989·47-s + 0.879·49-s − 0.199·51-s + 0.274·53-s − 0.836·55-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3840s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.719387670 |
L(21) |
≈ |
1.719387670 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1−T |
good | 7 | 1−3.62T+7T2 |
| 11 | 1+6.20T+11T2 |
| 13 | 1+0.578T+13T2 |
| 17 | 1−1.42T+17T2 |
| 19 | 1+5.62T+19T2 |
| 23 | 1−5.62T+23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1+2.57T+31T2 |
| 37 | 1−7.83T+37T2 |
| 41 | 1+5.25T+41T2 |
| 43 | 1−7.25T+43T2 |
| 47 | 1−6.78T+47T2 |
| 53 | 1−2T+53T2 |
| 59 | 1−2.20T+59T2 |
| 61 | 1−12.4T+61T2 |
| 67 | 1−4T+67T2 |
| 71 | 1+8.41T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−5.42T+79T2 |
| 83 | 1−3.25T+83T2 |
| 89 | 1−13.2T+89T2 |
| 97 | 1−4.84T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.337702114404272222902412693485, −7.79749667720417596638601843407, −7.10357676469451190764930613242, −6.12692934387805100168835692762, −5.27142135551028810300695850719, −5.01402190397445052088750995500, −4.12381235219561182874213259525, −2.69659815563183594262504280023, −2.03621277886311350921908334777, −0.78155673211614980318945705187,
0.78155673211614980318945705187, 2.03621277886311350921908334777, 2.69659815563183594262504280023, 4.12381235219561182874213259525, 5.01402190397445052088750995500, 5.27142135551028810300695850719, 6.12692934387805100168835692762, 7.10357676469451190764930613242, 7.79749667720417596638601843407, 8.337702114404272222902412693485