Properties

Label 2-3840-1.1-c1-0-14
Degree $2$
Conductor $3840$
Sign $1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 3.62·7-s + 9-s − 6.20·11-s − 0.578·13-s − 15-s + 1.42·17-s − 5.62·19-s − 3.62·21-s + 5.62·23-s + 25-s − 27-s + 2·29-s − 2.57·31-s + 6.20·33-s + 3.62·35-s + 7.83·37-s + 0.578·39-s − 5.25·41-s + 7.25·43-s + 45-s + 6.78·47-s + 6.15·49-s − 1.42·51-s + 2·53-s − 6.20·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1.37·7-s + 0.333·9-s − 1.87·11-s − 0.160·13-s − 0.258·15-s + 0.344·17-s − 1.29·19-s − 0.791·21-s + 1.17·23-s + 0.200·25-s − 0.192·27-s + 0.371·29-s − 0.463·31-s + 1.08·33-s + 0.613·35-s + 1.28·37-s + 0.0926·39-s − 0.820·41-s + 1.10·43-s + 0.149·45-s + 0.989·47-s + 0.879·49-s − 0.199·51-s + 0.274·53-s − 0.836·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.719387670\)
\(L(\frac12)\) \(\approx\) \(1.719387670\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
good7 \( 1 - 3.62T + 7T^{2} \)
11 \( 1 + 6.20T + 11T^{2} \)
13 \( 1 + 0.578T + 13T^{2} \)
17 \( 1 - 1.42T + 17T^{2} \)
19 \( 1 + 5.62T + 19T^{2} \)
23 \( 1 - 5.62T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 2.57T + 31T^{2} \)
37 \( 1 - 7.83T + 37T^{2} \)
41 \( 1 + 5.25T + 41T^{2} \)
43 \( 1 - 7.25T + 43T^{2} \)
47 \( 1 - 6.78T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 2.20T + 59T^{2} \)
61 \( 1 - 12.4T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 8.41T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 5.42T + 79T^{2} \)
83 \( 1 - 3.25T + 83T^{2} \)
89 \( 1 - 13.2T + 89T^{2} \)
97 \( 1 - 4.84T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.337702114404272222902412693485, −7.79749667720417596638601843407, −7.10357676469451190764930613242, −6.12692934387805100168835692762, −5.27142135551028810300695850719, −5.01402190397445052088750995500, −4.12381235219561182874213259525, −2.69659815563183594262504280023, −2.03621277886311350921908334777, −0.78155673211614980318945705187, 0.78155673211614980318945705187, 2.03621277886311350921908334777, 2.69659815563183594262504280023, 4.12381235219561182874213259525, 5.01402190397445052088750995500, 5.27142135551028810300695850719, 6.12692934387805100168835692762, 7.10357676469451190764930613242, 7.79749667720417596638601843407, 8.337702114404272222902412693485

Graph of the $Z$-function along the critical line