Properties

Label 2-3840-1.1-c1-0-43
Degree $2$
Conductor $3840$
Sign $-1$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s − 2·11-s + 2·13-s − 15-s + 4·17-s − 4·19-s + 2·21-s − 4·23-s + 25-s − 27-s + 2·29-s + 4·31-s + 2·33-s − 2·35-s − 2·37-s − 2·39-s − 6·41-s + 4·43-s + 45-s + 8·47-s − 3·49-s − 4·51-s − 10·53-s − 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s − 0.258·15-s + 0.970·17-s − 0.917·19-s + 0.436·21-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.348·33-s − 0.338·35-s − 0.328·37-s − 0.320·39-s − 0.937·41-s + 0.609·43-s + 0.149·45-s + 1.16·47-s − 3/7·49-s − 0.560·51-s − 1.37·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.131072938444719093648071025865, −7.31276043143988012921852589591, −6.39981137929568018254821286117, −6.02068627898151325117075778591, −5.25126839273566821455291492827, −4.34561655643917364661199646559, −3.42583354357075403934039312397, −2.50530685019232098024851380185, −1.33842132332385794180824115855, 0, 1.33842132332385794180824115855, 2.50530685019232098024851380185, 3.42583354357075403934039312397, 4.34561655643917364661199646559, 5.25126839273566821455291492827, 6.02068627898151325117075778591, 6.39981137929568018254821286117, 7.31276043143988012921852589591, 8.131072938444719093648071025865

Graph of the $Z$-function along the critical line