L(s) = 1 | − 3-s + (−2 + i)5-s − 4i·7-s + 9-s + 4i·11-s + (2 − i)15-s − 4i·17-s + 4i·21-s + 4i·23-s + (3 − 4i)25-s − 27-s − 6i·29-s − 4·31-s − 4i·33-s + (4 + 8i)35-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.894 + 0.447i)5-s − 1.51i·7-s + 0.333·9-s + 1.20i·11-s + (0.516 − 0.258i)15-s − 0.970i·17-s + 0.872i·21-s + 0.834i·23-s + (0.600 − 0.800i)25-s − 0.192·27-s − 1.11i·29-s − 0.718·31-s − 0.696i·33-s + (0.676 + 1.35i)35-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(−0.948−0.316i)Λ(2−s)
Λ(s)=(=(3840s/2ΓC(s+1/2)L(s)(−0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
−0.948−0.316i
|
Analytic conductor: |
30.6625 |
Root analytic conductor: |
5.53737 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(2689,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 3840, ( :1/2), −0.948−0.316i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 5 | 1+(2−i)T |
good | 7 | 1+4iT−7T2 |
| 11 | 1−4iT−11T2 |
| 13 | 1+13T2 |
| 17 | 1+4iT−17T2 |
| 19 | 1−19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+6iT−29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+8T+37T2 |
| 41 | 1−10T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+4iT−47T2 |
| 53 | 1−12T+53T2 |
| 59 | 1−4iT−59T2 |
| 61 | 1+2iT−61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+71T2 |
| 73 | 1−8iT−73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.67100691982592494319962475267, −7.18213666900942543000580526143, −7.07665093602553087222345303659, −5.87723075347834717108006791312, −4.88361477114835320659974691443, −4.18130388667794124337835390943, −3.70967122958870468544864992828, −2.46040909099634949532930674713, −1.09743047650742575618685524963, 0,
1.32837498739201785889138248628, 2.60520460625860638316609689475, 3.53563637696182971539412512751, 4.36734315782402222249206983174, 5.39548168780312930976396048678, 5.72215104117866980872136179120, 6.55695265434507127195503621243, 7.47767137471417224354679673393, 8.407437464506144848470774426634