Properties

Label 2-3840-5.4-c1-0-17
Degree $2$
Conductor $3840$
Sign $0.774 - 0.632i$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (−1.41 − 1.73i)5-s − 9-s + 3.46i·13-s + (−1.73 + 1.41i)15-s − 4.89i·17-s − 4.89·19-s + 2.82i·23-s + (−0.999 + 4.89i)25-s + i·27-s − 2.82·29-s + 6.92·31-s + 3.46i·37-s + 3.46·39-s − 6·41-s + ⋯
L(s)  = 1  − 0.577i·3-s + (−0.632 − 0.774i)5-s − 0.333·9-s + 0.960i·13-s + (−0.447 + 0.365i)15-s − 1.18i·17-s − 1.12·19-s + 0.589i·23-s + (−0.199 + 0.979i)25-s + 0.192i·27-s − 0.525·29-s + 1.24·31-s + 0.569i·37-s + 0.554·39-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $0.774 - 0.632i$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3840} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 0.774 - 0.632i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9270044621\)
\(L(\frac12)\) \(\approx\) \(0.9270044621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (1.41 + 1.73i)T \)
good7 \( 1 - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 3.46iT - 13T^{2} \)
17 \( 1 + 4.89iT - 17T^{2} \)
19 \( 1 + 4.89T + 19T^{2} \)
23 \( 1 - 2.82iT - 23T^{2} \)
29 \( 1 + 2.82T + 29T^{2} \)
31 \( 1 - 6.92T + 31T^{2} \)
37 \( 1 - 3.46iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 - 2.82iT - 47T^{2} \)
53 \( 1 - 3.46iT - 53T^{2} \)
59 \( 1 + 9.79T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 - 13.8T + 71T^{2} \)
73 \( 1 - 9.79iT - 73T^{2} \)
79 \( 1 - 6.92T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 + 9.79iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.424830791928168510594607336271, −7.935563710953389996485851496771, −7.07085138365242097095079990025, −6.54549413326864779593638200896, −5.54789115940819084460022445506, −4.71999964526291786668108294511, −4.11114301388108550223983325941, −3.02809702615586316138510891825, −1.97135345189278765907884797070, −0.943014666594503183318300406785, 0.32309412395170038469664037170, 2.07647480170153901320426822856, 3.02510174199330361077180721268, 3.80290238768168555845341306833, 4.41252645761260616801183615801, 5.42973632221786011924722619694, 6.25314754860798260692219997895, 6.83503869033605064009384425993, 7.913584728903214723867610015461, 8.260442719788825425341720474783

Graph of the $Z$-function along the critical line