L(s) = 1 | + i·3-s − i·5-s − 5.12·7-s − 9-s − 2i·11-s + 5.12i·13-s + 15-s − 1.12·17-s + 5.12i·19-s − 5.12i·21-s + 5.12·23-s − 25-s − i·27-s − 8.24i·29-s − 7.12·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.447i·5-s − 1.93·7-s − 0.333·9-s − 0.603i·11-s + 1.42i·13-s + 0.258·15-s − 0.272·17-s + 1.17i·19-s − 1.11i·21-s + 1.06·23-s − 0.200·25-s − 0.192i·27-s − 1.53i·29-s − 1.27·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8124602175\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8124602175\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + iT \) |
good | 7 | \( 1 + 5.12T + 7T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 - 5.12iT - 13T^{2} \) |
| 17 | \( 1 + 1.12T + 17T^{2} \) |
| 19 | \( 1 - 5.12iT - 19T^{2} \) |
| 23 | \( 1 - 5.12T + 23T^{2} \) |
| 29 | \( 1 + 8.24iT - 29T^{2} \) |
| 31 | \( 1 + 7.12T + 31T^{2} \) |
| 37 | \( 1 - 5.12iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 - 6.24iT - 43T^{2} \) |
| 47 | \( 1 + 13.1T + 47T^{2} \) |
| 53 | \( 1 + 10iT - 53T^{2} \) |
| 59 | \( 1 + 6iT - 59T^{2} \) |
| 61 | \( 1 + 2iT - 61T^{2} \) |
| 67 | \( 1 + 6.24iT - 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 - 4.24T + 73T^{2} \) |
| 79 | \( 1 + 4.87T + 79T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.611657452445501379285102495944, −7.72617962088933232204909919104, −6.52591128752080932003389042096, −6.40837591432449995517104966064, −5.44196989415582410602326255149, −4.48497369403423609453964334151, −3.66142692377574464770745891441, −3.15921978709729967992677613330, −1.91421539797541521171950899930, −0.32748077774054284701410958789,
0.76584223753163552447881125370, 2.34772436443490051628267610733, 3.08652116009663689287104432146, 3.59585452265659553413675680113, 4.98754107789656766357221443270, 5.74630505716381588764556589424, 6.52808577270932997410654582299, 7.14523424003820052189444408100, 7.45640552349936458603294612874, 8.790038710795134119865734419046