L(s) = 1 | + i·3-s − i·5-s + 3.12·7-s − 9-s − 2i·11-s − 3.12i·13-s + 15-s + 7.12·17-s − 3.12i·19-s + 3.12i·21-s − 3.12·23-s − 25-s − i·27-s + 8.24i·29-s + 1.12·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.447i·5-s + 1.18·7-s − 0.333·9-s − 0.603i·11-s − 0.866i·13-s + 0.258·15-s + 1.72·17-s − 0.716i·19-s + 0.681i·21-s − 0.651·23-s − 0.200·25-s − 0.192i·27-s + 1.53i·29-s + 0.201·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.137057331\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.137057331\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + iT \) |
good | 7 | \( 1 - 3.12T + 7T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 + 3.12iT - 13T^{2} \) |
| 17 | \( 1 - 7.12T + 17T^{2} \) |
| 19 | \( 1 + 3.12iT - 19T^{2} \) |
| 23 | \( 1 + 3.12T + 23T^{2} \) |
| 29 | \( 1 - 8.24iT - 29T^{2} \) |
| 31 | \( 1 - 1.12T + 31T^{2} \) |
| 37 | \( 1 + 3.12iT - 37T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 10.2iT - 43T^{2} \) |
| 47 | \( 1 + 4.87T + 47T^{2} \) |
| 53 | \( 1 + 10iT - 53T^{2} \) |
| 59 | \( 1 + 6iT - 59T^{2} \) |
| 61 | \( 1 + 2iT - 61T^{2} \) |
| 67 | \( 1 - 10.2iT - 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + 12.2T + 73T^{2} \) |
| 79 | \( 1 + 13.1T + 79T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 - 10T + 89T^{2} \) |
| 97 | \( 1 - 10T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.400746772174218309551087024090, −7.87675521799715148211384624911, −7.08252217003396257003379187180, −5.81012061919028319135955866881, −5.33925795444934262752519669567, −4.77877457841537199152844175026, −3.73491577008777230808061747953, −3.04577624620027699710202037048, −1.75033122343477263466771348352, −0.67320592125328005663727271297,
1.25319485591704553336122760667, 1.94223810870401816827566417299, 2.94964975198539160060439988839, 4.06848572271229881634683328044, 4.75552071045085263943698514269, 5.77334949476853694547674411115, 6.30417262091288783929756915700, 7.31594718710443209074835198338, 7.86909996932907762249291567071, 8.199890765142968065415789965299