Properties

Label 2-3840-8.5-c1-0-18
Degree $2$
Conductor $3840$
Sign $0.707 - 0.707i$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s i·5-s − 2·7-s − 9-s − 2i·11-s + 2i·13-s + 15-s − 2·17-s − 2i·19-s − 2i·21-s − 2·23-s − 25-s i·27-s + 6i·29-s + 4·31-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.447i·5-s − 0.755·7-s − 0.333·9-s − 0.603i·11-s + 0.554i·13-s + 0.258·15-s − 0.485·17-s − 0.458i·19-s − 0.436i·21-s − 0.417·23-s − 0.200·25-s − 0.192i·27-s + 1.11i·29-s + 0.718·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $0.707 - 0.707i$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3840} (1921, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.383162384\)
\(L(\frac12)\) \(\approx\) \(1.383162384\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
5 \( 1 + iT \)
good7 \( 1 + 2T + 7T^{2} \)
11 \( 1 + 2iT - 11T^{2} \)
13 \( 1 - 2iT - 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 + 2T + 23T^{2} \)
29 \( 1 - 6iT - 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 - 2T + 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 2iT - 59T^{2} \)
61 \( 1 - 10iT - 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.774952585729965456129835243451, −7.993912482476684355209898096027, −6.99942461829639485527240670252, −6.32539431110793658148666083920, −5.58083512635256841301766302033, −4.73637392265189121320659849815, −4.00343606549441224667644928499, −3.19988952236857052127572822872, −2.24930454546685715341295803470, −0.78859289201617975783698704764, 0.55929500020439937515470740784, 1.99369228606659514884963840121, 2.74643693783960879489484546063, 3.65577386419758656116920396697, 4.55047325233072525417247384495, 5.62232690846816836210592116059, 6.36100173357021849664235289123, 6.76742743840112987074920504934, 7.83256393604755001192482682697, 8.033509809642357855705635274075

Graph of the $Z$-function along the critical line