L(s) = 1 | + i·3-s − i·5-s − 2·7-s − 9-s − 2i·11-s + 2i·13-s + 15-s − 2·17-s − 2i·19-s − 2i·21-s − 2·23-s − 25-s − i·27-s + 6i·29-s + 4·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.447i·5-s − 0.755·7-s − 0.333·9-s − 0.603i·11-s + 0.554i·13-s + 0.258·15-s − 0.485·17-s − 0.458i·19-s − 0.436i·21-s − 0.417·23-s − 0.200·25-s − 0.192i·27-s + 1.11i·29-s + 0.718·31-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.707−0.707i)Λ(2−s)
Λ(s)=(=(3840s/2ΓC(s+1/2)L(s)(0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
0.707−0.707i
|
Analytic conductor: |
30.6625 |
Root analytic conductor: |
5.53737 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(1921,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :1/2), 0.707−0.707i)
|
Particular Values
L(1) |
≈ |
1.383162384 |
L(21) |
≈ |
1.383162384 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1+iT |
good | 7 | 1+2T+7T2 |
| 11 | 1+2iT−11T2 |
| 13 | 1−2iT−13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1+2iT−19T2 |
| 23 | 1+2T+23T2 |
| 29 | 1−6iT−29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1−10T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1−2T+47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−2iT−59T2 |
| 61 | 1−10iT−61T2 |
| 67 | 1+8iT−67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−16T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.774952585729965456129835243451, −7.993912482476684355209898096027, −6.99942461829639485527240670252, −6.32539431110793658148666083920, −5.58083512635256841301766302033, −4.73637392265189121320659849815, −4.00343606549441224667644928499, −3.19988952236857052127572822872, −2.24930454546685715341295803470, −0.78859289201617975783698704764,
0.55929500020439937515470740784, 1.99369228606659514884963840121, 2.74643693783960879489484546063, 3.65577386419758656116920396697, 4.55047325233072525417247384495, 5.62232690846816836210592116059, 6.36100173357021849664235289123, 6.76742743840112987074920504934, 7.83256393604755001192482682697, 8.033509809642357855705635274075