L(s) = 1 | + (−0.309 + 0.951i)9-s + (1.34 + 0.437i)13-s + (−1.34 + 0.437i)17-s + (0.809 − 0.587i)25-s + (−0.831 + 1.14i)29-s + (1.61 + 1.17i)37-s + (−0.831 − 1.14i)41-s + (0.309 + 0.951i)49-s + (−0.618 + 1.90i)53-s + (−1.34 + 0.437i)61-s + (0.831 − 1.14i)73-s + (−0.809 − 0.587i)81-s + 2·89-s + (1.34 + 0.437i)101-s + 1.41i·109-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)9-s + (1.34 + 0.437i)13-s + (−1.34 + 0.437i)17-s + (0.809 − 0.587i)25-s + (−0.831 + 1.14i)29-s + (1.61 + 1.17i)37-s + (−0.831 − 1.14i)41-s + (0.309 + 0.951i)49-s + (−0.618 + 1.90i)53-s + (−1.34 + 0.437i)61-s + (0.831 − 1.14i)73-s + (−0.809 − 0.587i)81-s + 2·89-s + (1.34 + 0.437i)101-s + 1.41i·109-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.396−0.917i)Λ(1−s)
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.396−0.917i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
0.396−0.917i
|
Analytic conductor: |
1.93237 |
Root analytic conductor: |
1.39010 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(3137,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :0), 0.396−0.917i)
|
Particular Values
L(21) |
≈ |
1.181143037 |
L(21) |
≈ |
1.181143037 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+(0.309−0.951i)T2 |
| 5 | 1+(−0.809+0.587i)T2 |
| 7 | 1+(−0.309−0.951i)T2 |
| 13 | 1+(−1.34−0.437i)T+(0.809+0.587i)T2 |
| 17 | 1+(1.34−0.437i)T+(0.809−0.587i)T2 |
| 19 | 1+(−0.309+0.951i)T2 |
| 23 | 1+T2 |
| 29 | 1+(0.831−1.14i)T+(−0.309−0.951i)T2 |
| 31 | 1+(−0.809−0.587i)T2 |
| 37 | 1+(−1.61−1.17i)T+(0.309+0.951i)T2 |
| 41 | 1+(0.831+1.14i)T+(−0.309+0.951i)T2 |
| 43 | 1−T2 |
| 47 | 1+(0.309−0.951i)T2 |
| 53 | 1+(0.618−1.90i)T+(−0.809−0.587i)T2 |
| 59 | 1+(0.309+0.951i)T2 |
| 61 | 1+(1.34−0.437i)T+(0.809−0.587i)T2 |
| 67 | 1+T2 |
| 71 | 1+(−0.809+0.587i)T2 |
| 73 | 1+(−0.831+1.14i)T+(−0.309−0.951i)T2 |
| 79 | 1+(0.809+0.587i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1−2T+T2 |
| 97 | 1+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.887780150439104764072802091108, −8.113618414792452379323727301467, −7.39586780128980637741165760825, −6.43308909227761896426253641132, −6.00906011236270065415402632883, −4.90954706395442221425906888917, −4.34400123263516743458687488414, −3.34233182067619751519590170843, −2.36303670167254789371035265555, −1.40533591163448978259427146473,
0.70173201103067781215567915997, 2.03397964865895315910821092875, 3.14439973003531019032530336506, 3.81868602102900334185343000195, 4.69049757274454529232047121730, 5.69732314887534612358386864154, 6.32222397794052967917380300566, 6.90190445064745387079403033776, 7.906863579373144942463864031026, 8.568430763925816910904685229750