L(s) = 1 | + (−0.309 + 0.951i)9-s + (1.34 + 0.437i)13-s + (−1.34 + 0.437i)17-s + (0.809 − 0.587i)25-s + (−0.831 + 1.14i)29-s + (1.61 + 1.17i)37-s + (−0.831 − 1.14i)41-s + (0.309 + 0.951i)49-s + (−0.618 + 1.90i)53-s + (−1.34 + 0.437i)61-s + (0.831 − 1.14i)73-s + (−0.809 − 0.587i)81-s + 2·89-s + (1.34 + 0.437i)101-s + 1.41i·109-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)9-s + (1.34 + 0.437i)13-s + (−1.34 + 0.437i)17-s + (0.809 − 0.587i)25-s + (−0.831 + 1.14i)29-s + (1.61 + 1.17i)37-s + (−0.831 − 1.14i)41-s + (0.309 + 0.951i)49-s + (−0.618 + 1.90i)53-s + (−1.34 + 0.437i)61-s + (0.831 − 1.14i)73-s + (−0.809 − 0.587i)81-s + 2·89-s + (1.34 + 0.437i)101-s + 1.41i·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.396 - 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.396 - 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.181143037\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.181143037\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-1.34 - 0.437i)T + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (1.34 - 0.437i)T + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (0.831 - 1.14i)T + (-0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.61 - 1.17i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.831 + 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.618 - 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (1.34 - 0.437i)T + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.831 + 1.14i)T + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - 2T + T^{2} \) |
| 97 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.887780150439104764072802091108, −8.113618414792452379323727301467, −7.39586780128980637741165760825, −6.43308909227761896426253641132, −6.00906011236270065415402632883, −4.90954706395442221425906888917, −4.34400123263516743458687488414, −3.34233182067619751519590170843, −2.36303670167254789371035265555, −1.40533591163448978259427146473,
0.70173201103067781215567915997, 2.03397964865895315910821092875, 3.14439973003531019032530336506, 3.81868602102900334185343000195, 4.69049757274454529232047121730, 5.69732314887534612358386864154, 6.32222397794052967917380300566, 6.90190445064745387079403033776, 7.906863579373144942463864031026, 8.568430763925816910904685229750