Properties

Label 2-3872-8.5-c1-0-98
Degree $2$
Conductor $3872$
Sign $0.243 - 0.969i$
Analytic cond. $30.9180$
Root an. cond. $5.56040$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.85i·3-s − 2.60i·5-s + 0.196·7-s − 5.16·9-s + 3.97i·13-s − 7.45·15-s + 1.23·17-s − 5.47i·19-s − 0.560i·21-s − 3.19·23-s − 1.80·25-s + 6.17i·27-s + 3.03i·29-s − 9.83·31-s − 0.512i·35-s + ⋯
L(s)  = 1  − 1.64i·3-s − 1.16i·5-s + 0.0742·7-s − 1.72·9-s + 1.10i·13-s − 1.92·15-s + 0.300·17-s − 1.25i·19-s − 0.122i·21-s − 0.666·23-s − 0.360·25-s + 1.18i·27-s + 0.563i·29-s − 1.76·31-s − 0.0865i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.243 - 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.243 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3872\)    =    \(2^{5} \cdot 11^{2}\)
Sign: $0.243 - 0.969i$
Analytic conductor: \(30.9180\)
Root analytic conductor: \(5.56040\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3872} (1937, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3872,\ (\ :1/2),\ 0.243 - 0.969i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2928258159\)
\(L(\frac12)\) \(\approx\) \(0.2928258159\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2.85iT - 3T^{2} \)
5 \( 1 + 2.60iT - 5T^{2} \)
7 \( 1 - 0.196T + 7T^{2} \)
13 \( 1 - 3.97iT - 13T^{2} \)
17 \( 1 - 1.23T + 17T^{2} \)
19 \( 1 + 5.47iT - 19T^{2} \)
23 \( 1 + 3.19T + 23T^{2} \)
29 \( 1 - 3.03iT - 29T^{2} \)
31 \( 1 + 9.83T + 31T^{2} \)
37 \( 1 - 7.55iT - 37T^{2} \)
41 \( 1 + 7.31T + 41T^{2} \)
43 \( 1 + 3.82iT - 43T^{2} \)
47 \( 1 - 0.507T + 47T^{2} \)
53 \( 1 + 0.0213iT - 53T^{2} \)
59 \( 1 - 5.64iT - 59T^{2} \)
61 \( 1 - 12.9iT - 61T^{2} \)
67 \( 1 - 2.16iT - 67T^{2} \)
71 \( 1 + 4.27T + 71T^{2} \)
73 \( 1 - 2.56T + 73T^{2} \)
79 \( 1 + 5.10T + 79T^{2} \)
83 \( 1 + 2.30iT - 83T^{2} \)
89 \( 1 + 6.22T + 89T^{2} \)
97 \( 1 + 0.832T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85295501670039422854855109277, −7.08670083136240732446836257603, −6.67917004533262325441754559304, −5.70976721869674262319191711194, −5.03446912420936518980417855427, −4.14507277262024451274887054862, −2.89226187924356117245016918531, −1.81522674745073099004026790570, −1.29088061501421870988151453388, −0.082562527925508140720580206290, 2.03519449112753642198895404299, 3.28989818844095098577479407691, 3.46323233814996217893541986383, 4.39051423560053834181576515485, 5.42949252951551065069383224617, 5.80002031214632792367038400613, 6.78955715113315561051978476650, 7.79212205455881247444257322674, 8.273155251224223254086702966536, 9.364864773571584933135748579059

Graph of the $Z$-function along the critical line