L(s) = 1 | − 2.85i·3-s − 2.60i·5-s + 0.196·7-s − 5.16·9-s + 3.97i·13-s − 7.45·15-s + 1.23·17-s − 5.47i·19-s − 0.560i·21-s − 3.19·23-s − 1.80·25-s + 6.17i·27-s + 3.03i·29-s − 9.83·31-s − 0.512i·35-s + ⋯ |
L(s) = 1 | − 1.64i·3-s − 1.16i·5-s + 0.0742·7-s − 1.72·9-s + 1.10i·13-s − 1.92·15-s + 0.300·17-s − 1.25i·19-s − 0.122i·21-s − 0.666·23-s − 0.360·25-s + 1.18i·27-s + 0.563i·29-s − 1.76·31-s − 0.0865i·35-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.243−0.969i)Λ(2−s)
Λ(s)=(=(3872s/2ΓC(s+1/2)L(s)(0.243−0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
0.243−0.969i
|
Analytic conductor: |
30.9180 |
Root analytic conductor: |
5.56040 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(1937,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :1/2), 0.243−0.969i)
|
Particular Values
L(1) |
≈ |
0.2928258159 |
L(21) |
≈ |
0.2928258159 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+2.85iT−3T2 |
| 5 | 1+2.60iT−5T2 |
| 7 | 1−0.196T+7T2 |
| 13 | 1−3.97iT−13T2 |
| 17 | 1−1.23T+17T2 |
| 19 | 1+5.47iT−19T2 |
| 23 | 1+3.19T+23T2 |
| 29 | 1−3.03iT−29T2 |
| 31 | 1+9.83T+31T2 |
| 37 | 1−7.55iT−37T2 |
| 41 | 1+7.31T+41T2 |
| 43 | 1+3.82iT−43T2 |
| 47 | 1−0.507T+47T2 |
| 53 | 1+0.0213iT−53T2 |
| 59 | 1−5.64iT−59T2 |
| 61 | 1−12.9iT−61T2 |
| 67 | 1−2.16iT−67T2 |
| 71 | 1+4.27T+71T2 |
| 73 | 1−2.56T+73T2 |
| 79 | 1+5.10T+79T2 |
| 83 | 1+2.30iT−83T2 |
| 89 | 1+6.22T+89T2 |
| 97 | 1+0.832T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.85295501670039422854855109277, −7.08670083136240732446836257603, −6.67917004533262325441754559304, −5.70976721869674262319191711194, −5.03446912420936518980417855427, −4.14507277262024451274887054862, −2.89226187924356117245016918531, −1.81522674745073099004026790570, −1.29088061501421870988151453388, −0.082562527925508140720580206290,
2.03519449112753642198895404299, 3.28989818844095098577479407691, 3.46323233814996217893541986383, 4.39051423560053834181576515485, 5.42949252951551065069383224617, 5.80002031214632792367038400613, 6.78955715113315561051978476650, 7.79212205455881247444257322674, 8.273155251224223254086702966536, 9.364864773571584933135748579059