Properties

Label 2-3872-8.5-c1-0-78
Degree $2$
Conductor $3872$
Sign $-0.229 + 0.973i$
Analytic cond. $30.9180$
Root an. cond. $5.56040$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.540i·3-s − 2.90i·5-s + 2.60·7-s + 2.70·9-s + 2.61i·13-s − 1.56·15-s − 6.89·17-s − 1.60i·19-s − 1.40i·21-s + 4.01·23-s − 3.41·25-s − 3.08i·27-s − 1.99i·29-s + 5.18·31-s − 7.55i·35-s + ⋯
L(s)  = 1  − 0.312i·3-s − 1.29i·5-s + 0.984·7-s + 0.902·9-s + 0.725i·13-s − 0.404·15-s − 1.67·17-s − 0.367i·19-s − 0.307i·21-s + 0.837·23-s − 0.683·25-s − 0.593i·27-s − 0.370i·29-s + 0.930·31-s − 1.27i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3872\)    =    \(2^{5} \cdot 11^{2}\)
Sign: $-0.229 + 0.973i$
Analytic conductor: \(30.9180\)
Root analytic conductor: \(5.56040\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3872} (1937, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3872,\ (\ :1/2),\ -0.229 + 0.973i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.145018913\)
\(L(\frac12)\) \(\approx\) \(2.145018913\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 0.540iT - 3T^{2} \)
5 \( 1 + 2.90iT - 5T^{2} \)
7 \( 1 - 2.60T + 7T^{2} \)
13 \( 1 - 2.61iT - 13T^{2} \)
17 \( 1 + 6.89T + 17T^{2} \)
19 \( 1 + 1.60iT - 19T^{2} \)
23 \( 1 - 4.01T + 23T^{2} \)
29 \( 1 + 1.99iT - 29T^{2} \)
31 \( 1 - 5.18T + 31T^{2} \)
37 \( 1 + 8.58iT - 37T^{2} \)
41 \( 1 + 3.74T + 41T^{2} \)
43 \( 1 + 2.47iT - 43T^{2} \)
47 \( 1 - 11.8T + 47T^{2} \)
53 \( 1 - 1.29iT - 53T^{2} \)
59 \( 1 + 0.351iT - 59T^{2} \)
61 \( 1 + 3.08iT - 61T^{2} \)
67 \( 1 + 10.3iT - 67T^{2} \)
71 \( 1 + 3.47T + 71T^{2} \)
73 \( 1 + 1.33T + 73T^{2} \)
79 \( 1 - 4.32T + 79T^{2} \)
83 \( 1 + 15.9iT - 83T^{2} \)
89 \( 1 + 13.1T + 89T^{2} \)
97 \( 1 - 8.61T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.393568992762305858202574827940, −7.52851104089077145076808019042, −6.92584122312136918257336685748, −6.06981774831427870258557617624, −4.91996480219444093552520603173, −4.64545951421078829128223774765, −3.97151008553635904341389479707, −2.32164494305229086493011179422, −1.63545306923616809526338703094, −0.66334738858411860620795175900, 1.28743204027936239305134018848, 2.39716711639003532257263345048, 3.15956100474084994765569842297, 4.21528549168006274628991489856, 4.76842825168096123534822413027, 5.71258458071706774213012651753, 6.83685769239310709693162788545, 6.95120450150727007565184786172, 7.975354137257398452244679188064, 8.568007250756743754863884383744

Graph of the $Z$-function along the critical line