L(s) = 1 | − 0.540i·3-s − 2.90i·5-s + 2.60·7-s + 2.70·9-s + 2.61i·13-s − 1.56·15-s − 6.89·17-s − 1.60i·19-s − 1.40i·21-s + 4.01·23-s − 3.41·25-s − 3.08i·27-s − 1.99i·29-s + 5.18·31-s − 7.55i·35-s + ⋯ |
L(s) = 1 | − 0.312i·3-s − 1.29i·5-s + 0.984·7-s + 0.902·9-s + 0.725i·13-s − 0.404·15-s − 1.67·17-s − 0.367i·19-s − 0.307i·21-s + 0.837·23-s − 0.683·25-s − 0.593i·27-s − 0.370i·29-s + 0.930·31-s − 1.27i·35-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(−0.229+0.973i)Λ(2−s)
Λ(s)=(=(3872s/2ΓC(s+1/2)L(s)(−0.229+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
−0.229+0.973i
|
Analytic conductor: |
30.9180 |
Root analytic conductor: |
5.56040 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(1937,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :1/2), −0.229+0.973i)
|
Particular Values
L(1) |
≈ |
2.145018913 |
L(21) |
≈ |
2.145018913 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1+0.540iT−3T2 |
| 5 | 1+2.90iT−5T2 |
| 7 | 1−2.60T+7T2 |
| 13 | 1−2.61iT−13T2 |
| 17 | 1+6.89T+17T2 |
| 19 | 1+1.60iT−19T2 |
| 23 | 1−4.01T+23T2 |
| 29 | 1+1.99iT−29T2 |
| 31 | 1−5.18T+31T2 |
| 37 | 1+8.58iT−37T2 |
| 41 | 1+3.74T+41T2 |
| 43 | 1+2.47iT−43T2 |
| 47 | 1−11.8T+47T2 |
| 53 | 1−1.29iT−53T2 |
| 59 | 1+0.351iT−59T2 |
| 61 | 1+3.08iT−61T2 |
| 67 | 1+10.3iT−67T2 |
| 71 | 1+3.47T+71T2 |
| 73 | 1+1.33T+73T2 |
| 79 | 1−4.32T+79T2 |
| 83 | 1+15.9iT−83T2 |
| 89 | 1+13.1T+89T2 |
| 97 | 1−8.61T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.393568992762305858202574827940, −7.52851104089077145076808019042, −6.92584122312136918257336685748, −6.06981774831427870258557617624, −4.91996480219444093552520603173, −4.64545951421078829128223774765, −3.97151008553635904341389479707, −2.32164494305229086493011179422, −1.63545306923616809526338703094, −0.66334738858411860620795175900,
1.28743204027936239305134018848, 2.39716711639003532257263345048, 3.15956100474084994765569842297, 4.21528549168006274628991489856, 4.76842825168096123534822413027, 5.71258458071706774213012651753, 6.83685769239310709693162788545, 6.95120450150727007565184786172, 7.975354137257398452244679188064, 8.568007250756743754863884383744