L(s) = 1 | − 6·5-s + 3·7-s + 3·11-s − 3·13-s − 9·17-s + 3·19-s + 6·23-s + 12·25-s − 12·29-s + 12·31-s − 18·35-s − 3·37-s + 3·41-s + 12·43-s − 6·47-s − 6·49-s − 18·53-s − 18·55-s − 21·59-s + 6·61-s + 18·65-s − 6·67-s − 9·71-s + 6·73-s + 9·77-s − 6·79-s − 6·83-s + ⋯ |
L(s) = 1 | − 2.68·5-s + 1.13·7-s + 0.904·11-s − 0.832·13-s − 2.18·17-s + 0.688·19-s + 1.25·23-s + 12/5·25-s − 2.22·29-s + 2.15·31-s − 3.04·35-s − 0.493·37-s + 0.468·41-s + 1.82·43-s − 0.875·47-s − 6/7·49-s − 2.47·53-s − 2.42·55-s − 2.73·59-s + 0.768·61-s + 2.23·65-s − 0.733·67-s − 1.06·71-s + 0.702·73-s + 1.02·77-s − 0.675·79-s − 0.658·83-s + ⋯ |
Λ(s)=(=((212⋅315)s/2ΓC(s)3L(s)−Λ(2−s)
Λ(s)=(=((212⋅315)s/2ΓC(s+1/2)3L(s)−Λ(1−s)
Degree: |
6 |
Conductor: |
212⋅315
|
Sign: |
−1
|
Analytic conductor: |
29923.3 |
Root analytic conductor: |
5.57187 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
3
|
Selberg data: |
(6, 212⋅315, ( :1/2,1/2,1/2), −1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | A4×C2 | 1+6T+24T2+63T3+24pT4+6p2T5+p3T6 |
| 7 | A4×C2 | 1−3T+15T2−25T3+15pT4−3p2T5+p3T6 |
| 11 | A4×C2 | 1−3T+15T2−63T3+15pT4−3p2T5+p3T6 |
| 13 | A4×C2 | 1+3T+33T2+61T3+33pT4+3p2T5+p3T6 |
| 17 | C2 | (1+3T+pT2)3 |
| 19 | A4×C2 | 1−3T+33T2−115T3+33pT4−3p2T5+p3T6 |
| 23 | A4×C2 | 1−6T+60T2−225T3+60pT4−6p2T5+p3T6 |
| 29 | A4×C2 | 1+12T+114T2+639T3+114pT4+12p2T5+p3T6 |
| 31 | A4×C2 | 1−12T+132T2−763T3+132pT4−12p2T5+p3T6 |
| 37 | A4×C2 | 1+3T+87T2+223T3+87pT4+3p2T5+p3T6 |
| 41 | A4×C2 | 1−3T+69T2−27T3+69pT4−3p2T5+p3T6 |
| 43 | A4×C2 | 1−12T+168T2−1051T3+168pT4−12p2T5+p3T6 |
| 47 | A4×C2 | 1+6T+78T2+297T3+78pT4+6p2T5+p3T6 |
| 53 | A4×C2 | 1+18T+240T2+1989T3+240pT4+18p2T5+p3T6 |
| 59 | A4×C2 | 1+21T+321T2+2799T3+321pT4+21p2T5+p3T6 |
| 61 | A4×C2 | 1−6T+132T2−785T3+132pT4−6p2T5+p3T6 |
| 67 | A4×C2 | 1+6T+150T2+695T3+150pT4+6p2T5+p3T6 |
| 71 | A4×C2 | 1+9T+51T2+279T3+51pT4+9p2T5+p3T6 |
| 73 | A4×C2 | 1−6T+150T2−479T3+150pT4−6p2T5+p3T6 |
| 79 | A4×C2 | 1+6T+186T2+1001T3+186pT4+6p2T5+p3T6 |
| 83 | A4×C2 | 1+6T+222T2+945T3+222pT4+6p2T5+p3T6 |
| 89 | A4×C2 | 1+78T2−999T3+78pT4+p3T6 |
| 97 | A4×C2 | 1−15T+222T2−2891T3+222pT4−15p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.949006234235659012259460467551, −7.61900457199935498004591451961, −7.47121996593214277545433940460, −7.36901086495246683706311938885, −6.85504095659697584647232344179, −6.73255519659357397100650458680, −6.62881203407608945484571557486, −6.10289652796523199982805761756, −5.89022826964615820466444961335, −5.77314750969281902168893971711, −4.99473379624509408119723929810, −4.85510581554273203279306503146, −4.83341215912606419559855530729, −4.62926178415234484386524268833, −4.23953675827492579621695492413, −4.10319146589635572577495966231, −3.65736091024836392054639909659, −3.57230502601571549533672351001, −3.37191862324751162921187324734, −2.62758414343559060131625559676, −2.57177888177779657641788038413, −2.41520092911475986425798225864, −1.53061570986950636523135884593, −1.30793952740054271621150881334, −1.28298563183084351914027469446, 0, 0, 0,
1.28298563183084351914027469446, 1.30793952740054271621150881334, 1.53061570986950636523135884593, 2.41520092911475986425798225864, 2.57177888177779657641788038413, 2.62758414343559060131625559676, 3.37191862324751162921187324734, 3.57230502601571549533672351001, 3.65736091024836392054639909659, 4.10319146589635572577495966231, 4.23953675827492579621695492413, 4.62926178415234484386524268833, 4.83341215912606419559855530729, 4.85510581554273203279306503146, 4.99473379624509408119723929810, 5.77314750969281902168893971711, 5.89022826964615820466444961335, 6.10289652796523199982805761756, 6.62881203407608945484571557486, 6.73255519659357397100650458680, 6.85504095659697584647232344179, 7.36901086495246683706311938885, 7.47121996593214277545433940460, 7.61900457199935498004591451961, 7.949006234235659012259460467551