L(s) = 1 | − 1.73i·7-s − 5·13-s + 5.19i·19-s + 5·25-s − 1.73i·31-s − 37-s + 12.1i·43-s + 4·49-s + 14·61-s + 3.46i·67-s + 10·73-s + 5.19i·79-s + 8.66i·91-s + 19·97-s − 3.46i·103-s + ⋯ |
L(s) = 1 | − 0.654i·7-s − 1.38·13-s + 1.19i·19-s + 25-s − 0.311i·31-s − 0.164·37-s + 1.84i·43-s + 0.571·49-s + 1.79·61-s + 0.423i·67-s + 1.17·73-s + 0.584i·79-s + 0.907i·91-s + 1.92·97-s − 0.341i·103-s + ⋯ |
Λ(s)=(=(3888s/2ΓC(s)L(s)(0.866−0.5i)Λ(2−s)
Λ(s)=(=(3888s/2ΓC(s+1/2)L(s)(0.866−0.5i)Λ(1−s)
Degree: |
2 |
Conductor: |
3888
= 24⋅35
|
Sign: |
0.866−0.5i
|
Analytic conductor: |
31.0458 |
Root analytic conductor: |
5.57187 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3888(3887,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3888, ( :1/2), 0.866−0.5i)
|
Particular Values
L(1) |
≈ |
1.536613077 |
L(21) |
≈ |
1.536613077 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−5T2 |
| 7 | 1+1.73iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1+5T+13T2 |
| 17 | 1−17T2 |
| 19 | 1−5.19iT−19T2 |
| 23 | 1+23T2 |
| 29 | 1−29T2 |
| 31 | 1+1.73iT−31T2 |
| 37 | 1+T+37T2 |
| 41 | 1−41T2 |
| 43 | 1−12.1iT−43T2 |
| 47 | 1+47T2 |
| 53 | 1−53T2 |
| 59 | 1+59T2 |
| 61 | 1−14T+61T2 |
| 67 | 1−3.46iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1−5.19iT−79T2 |
| 83 | 1+83T2 |
| 89 | 1−89T2 |
| 97 | 1−19T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.416963170923571541082869928268, −7.75518421533519040946674359356, −7.13668568638155373234807499260, −6.42733369651222158320728151636, −5.48699053123705789383172323760, −4.74115199057845646833395970396, −3.98941359928894195860114952354, −3.04854431429324880386763263848, −2.08926203324091003929469616784, −0.873410222619377677133362177247,
0.56888979240443523485451004707, 2.12866043508923671343335719466, 2.71409612348653969035337592244, 3.75224571957846151204971727794, 4.95142969122764262924888752986, 5.14471324328776300412958484157, 6.25723759574105145418968551534, 7.04533586242340999746666343824, 7.52575193544606295970146718479, 8.665539042875274873056750348447