L(s) = 1 | − 1.73i·7-s − 5·13-s + 5.19i·19-s + 5·25-s − 1.73i·31-s − 37-s + 12.1i·43-s + 4·49-s + 14·61-s + 3.46i·67-s + 10·73-s + 5.19i·79-s + 8.66i·91-s + 19·97-s − 3.46i·103-s + ⋯ |
L(s) = 1 | − 0.654i·7-s − 1.38·13-s + 1.19i·19-s + 25-s − 0.311i·31-s − 0.164·37-s + 1.84i·43-s + 0.571·49-s + 1.79·61-s + 0.423i·67-s + 1.17·73-s + 0.584i·79-s + 0.907i·91-s + 1.92·97-s − 0.341i·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.536613077\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.536613077\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 - 5T^{2} \) |
| 7 | \( 1 + 1.73iT - 7T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 13 | \( 1 + 5T + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 - 5.19iT - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 1.73iT - 31T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 12.1iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 14T + 61T^{2} \) |
| 67 | \( 1 - 3.46iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 - 5.19iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 - 19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.416963170923571541082869928268, −7.75518421533519040946674359356, −7.13668568638155373234807499260, −6.42733369651222158320728151636, −5.48699053123705789383172323760, −4.74115199057845646833395970396, −3.98941359928894195860114952354, −3.04854431429324880386763263848, −2.08926203324091003929469616784, −0.873410222619377677133362177247,
0.56888979240443523485451004707, 2.12866043508923671343335719466, 2.71409612348653969035337592244, 3.75224571957846151204971727794, 4.95142969122764262924888752986, 5.14471324328776300412958484157, 6.25723759574105145418968551534, 7.04533586242340999746666343824, 7.52575193544606295970146718479, 8.665539042875274873056750348447