Properties

Label 2-3888-12.11-c1-0-21
Degree $2$
Conductor $3888$
Sign $0.866 - 0.5i$
Analytic cond. $31.0458$
Root an. cond. $5.57187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·7-s − 5·13-s + 5.19i·19-s + 5·25-s − 1.73i·31-s − 37-s + 12.1i·43-s + 4·49-s + 14·61-s + 3.46i·67-s + 10·73-s + 5.19i·79-s + 8.66i·91-s + 19·97-s − 3.46i·103-s + ⋯
L(s)  = 1  − 0.654i·7-s − 1.38·13-s + 1.19i·19-s + 25-s − 0.311i·31-s − 0.164·37-s + 1.84i·43-s + 0.571·49-s + 1.79·61-s + 0.423i·67-s + 1.17·73-s + 0.584i·79-s + 0.907i·91-s + 1.92·97-s − 0.341i·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3888\)    =    \(2^{4} \cdot 3^{5}\)
Sign: $0.866 - 0.5i$
Analytic conductor: \(31.0458\)
Root analytic conductor: \(5.57187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3888} (3887, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3888,\ (\ :1/2),\ 0.866 - 0.5i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.536613077\)
\(L(\frac12)\) \(\approx\) \(1.536613077\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 5T^{2} \)
7 \( 1 + 1.73iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 5T + 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 5.19iT - 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 1.73iT - 31T^{2} \)
37 \( 1 + T + 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 - 12.1iT - 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 14T + 61T^{2} \)
67 \( 1 - 3.46iT - 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 5.19iT - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.416963170923571541082869928268, −7.75518421533519040946674359356, −7.13668568638155373234807499260, −6.42733369651222158320728151636, −5.48699053123705789383172323760, −4.74115199057845646833395970396, −3.98941359928894195860114952354, −3.04854431429324880386763263848, −2.08926203324091003929469616784, −0.873410222619377677133362177247, 0.56888979240443523485451004707, 2.12866043508923671343335719466, 2.71409612348653969035337592244, 3.75224571957846151204971727794, 4.95142969122764262924888752986, 5.14471324328776300412958484157, 6.25723759574105145418968551534, 7.04533586242340999746666343824, 7.52575193544606295970146718479, 8.665539042875274873056750348447

Graph of the $Z$-function along the critical line