Properties

Label 2-39-13.8-c2-0-3
Degree 22
Conductor 3939
Sign 0.702+0.711i-0.702 + 0.711i
Analytic cond. 1.062671.06267
Root an. cond. 1.030861.03086
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.26 − 1.26i)2-s − 1.73·3-s − 0.798i·4-s + (−4.65 − 4.65i)5-s + (2.19 + 2.19i)6-s + (1.87 − 1.87i)7-s + (−6.07 + 6.07i)8-s + 2.99·9-s + 11.7i·10-s + (11.0 − 11.0i)11-s + 1.38i·12-s + (11.4 + 6.06i)13-s − 4.75·14-s + (8.06 + 8.06i)15-s + 12.1·16-s + 3.20i·17-s + ⋯
L(s)  = 1  + (−0.632 − 0.632i)2-s − 0.577·3-s − 0.199i·4-s + (−0.931 − 0.931i)5-s + (0.365 + 0.365i)6-s + (0.268 − 0.268i)7-s + (−0.758 + 0.758i)8-s + 0.333·9-s + 1.17i·10-s + (1.00 − 1.00i)11-s + 0.115i·12-s + (0.884 + 0.466i)13-s − 0.339·14-s + (0.537 + 0.537i)15-s + 0.760·16-s + 0.188i·17-s + ⋯

Functional equation

Λ(s)=(39s/2ΓC(s)L(s)=((0.702+0.711i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(39s/2ΓC(s+1)L(s)=((0.702+0.711i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 3939    =    3133 \cdot 13
Sign: 0.702+0.711i-0.702 + 0.711i
Analytic conductor: 1.062671.06267
Root analytic conductor: 1.030861.03086
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ39(34,)\chi_{39} (34, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 39, ( :1), 0.702+0.711i)(2,\ 39,\ (\ :1),\ -0.702 + 0.711i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.2122290.508118i0.212229 - 0.508118i
L(12)L(\frac12) \approx 0.2122290.508118i0.212229 - 0.508118i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+1.73T 1 + 1.73T
13 1+(11.46.06i)T 1 + (-11.4 - 6.06i)T
good2 1+(1.26+1.26i)T+4iT2 1 + (1.26 + 1.26i)T + 4iT^{2}
5 1+(4.65+4.65i)T+25iT2 1 + (4.65 + 4.65i)T + 25iT^{2}
7 1+(1.87+1.87i)T49iT2 1 + (-1.87 + 1.87i)T - 49iT^{2}
11 1+(11.0+11.0i)T121iT2 1 + (-11.0 + 11.0i)T - 121iT^{2}
17 13.20iT289T2 1 - 3.20iT - 289T^{2}
19 1+(19.7+19.7i)T+361iT2 1 + (19.7 + 19.7i)T + 361iT^{2}
23 13.84iT529T2 1 - 3.84iT - 529T^{2}
29 125.4T+841T2 1 - 25.4T + 841T^{2}
31 1+(25.7+25.7i)T+961iT2 1 + (25.7 + 25.7i)T + 961iT^{2}
37 1+(35.2+35.2i)T1.36e3iT2 1 + (-35.2 + 35.2i)T - 1.36e3iT^{2}
41 1+(41.041.0i)T+1.68e3iT2 1 + (-41.0 - 41.0i)T + 1.68e3iT^{2}
43 151.1iT1.84e3T2 1 - 51.1iT - 1.84e3T^{2}
47 1+(0.856+0.856i)T2.20e3iT2 1 + (-0.856 + 0.856i)T - 2.20e3iT^{2}
53 1+39.2T+2.80e3T2 1 + 39.2T + 2.80e3T^{2}
59 1+(54.7+54.7i)T3.48e3iT2 1 + (-54.7 + 54.7i)T - 3.48e3iT^{2}
61 150.5T+3.72e3T2 1 - 50.5T + 3.72e3T^{2}
67 1+(1.32+1.32i)T+4.48e3iT2 1 + (1.32 + 1.32i)T + 4.48e3iT^{2}
71 1+(10.8+10.8i)T+5.04e3iT2 1 + (10.8 + 10.8i)T + 5.04e3iT^{2}
73 1+(91.291.2i)T5.32e3iT2 1 + (91.2 - 91.2i)T - 5.32e3iT^{2}
79 195.2T+6.24e3T2 1 - 95.2T + 6.24e3T^{2}
83 1+(20.5+20.5i)T+6.88e3iT2 1 + (20.5 + 20.5i)T + 6.88e3iT^{2}
89 1+(71.271.2i)T7.92e3iT2 1 + (71.2 - 71.2i)T - 7.92e3iT^{2}
97 1+(28.428.4i)T+9.40e3iT2 1 + (-28.4 - 28.4i)T + 9.40e3iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−15.90229601459738281437847430901, −14.46300071822782809327746035646, −12.85100623723419785205862558093, −11.39456648775723331396706858319, −11.14493292080846773750196858265, −9.268253990503975919829497548866, −8.319725717180099591951039635340, −6.16912531339483720909952502734, −4.30207349851120949249536880178, −0.893582822051883630884892976829, 3.86473272019059703044966353948, 6.37323303951126276055559704336, 7.38752350060111876012239379157, 8.647719334869752701665622913581, 10.34146852372127981291283636087, 11.65945856964439467475927562875, 12.55468169466272420335860685679, 14.65231727225159388066840835163, 15.45177608089529926143625556347, 16.48337310709179536544459443650

Graph of the ZZ-function along the critical line