L(s) = 1 | + (−7.79 + 13.5i)3-s + (−27.7 + 16i)4-s + (66.1 − 247. i)7-s + (−121.5 − 210. i)9-s − 498. i·12-s + (−470. + 387.5i)13-s + (511. − 886. i)16-s + (−2.89e3 − 774. i)19-s + (2.81e3 + 2.81e3i)21-s − 3.12e3i·25-s + 3.78e3·27-s + (2.11e3 + 7.90e3i)28-s + (−3.81e3 + 3.81e3i)31-s + (6.73e3 + 3.88e3i)36-s + (−1.00e4 + 2.68e3i)37-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.866i)3-s + (−0.866 + 0.5i)4-s + (0.510 − 1.90i)7-s + (−0.5 − 0.866i)9-s − 0.999i·12-s + (−0.771 + 0.635i)13-s + (0.499 − 0.866i)16-s + (−1.83 − 0.492i)19-s + (1.39 + 1.39i)21-s − i·25-s + 1.00·27-s + (0.510 + 1.90i)28-s + (−0.712 + 0.712i)31-s + (0.866 + 0.5i)36-s + (−1.20 + 0.322i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.203315 - 0.305569i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.203315 - 0.305569i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (7.79 - 13.5i)T \) |
| 13 | \( 1 + (470. - 387.5i)T \) |
good | 2 | \( 1 + (27.7 - 16i)T^{2} \) |
| 5 | \( 1 + 3.12e3iT^{2} \) |
| 7 | \( 1 + (-66.1 + 247. i)T + (-1.45e4 - 8.40e3i)T^{2} \) |
| 11 | \( 1 + (-1.39e5 + 8.05e4i)T^{2} \) |
| 17 | \( 1 + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (2.89e3 + 774. i)T + (2.14e6 + 1.23e6i)T^{2} \) |
| 23 | \( 1 + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + (1.02e7 + 1.77e7i)T^{2} \) |
| 31 | \( 1 + (3.81e3 - 3.81e3i)T - 2.86e7iT^{2} \) |
| 37 | \( 1 + (1.00e4 - 2.68e3i)T + (6.00e7 - 3.46e7i)T^{2} \) |
| 41 | \( 1 + (1.00e8 - 5.79e7i)T^{2} \) |
| 43 | \( 1 + (-1.29e4 + 7.45e3i)T + (7.35e7 - 1.27e8i)T^{2} \) |
| 47 | \( 1 - 2.29e8iT^{2} \) |
| 53 | \( 1 - 4.18e8T^{2} \) |
| 59 | \( 1 + (6.19e8 + 3.57e8i)T^{2} \) |
| 61 | \( 1 + (5.86e3 + 1.01e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-1.84e4 - 6.88e4i)T + (-1.16e9 + 6.75e8i)T^{2} \) |
| 71 | \( 1 + (-1.56e9 - 9.02e8i)T^{2} \) |
| 73 | \( 1 + (1.76e4 + 1.76e4i)T + 2.07e9iT^{2} \) |
| 79 | \( 1 - 6.36e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 3.93e9iT^{2} \) |
| 89 | \( 1 + (-4.83e9 + 2.79e9i)T^{2} \) |
| 97 | \( 1 + (8.54e4 + 2.29e4i)T + (7.43e9 + 4.29e9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.64925026228505203143967013845, −13.84029511888420161946234751223, −12.44508951856654935359265539440, −10.92587852683318683285770360216, −10.03468676279492694748770109662, −8.605224763742801688675638206454, −7.00709086706743639641817654342, −4.71819623257437878016919190860, −3.98407805014194352552265625554, −0.21987689046216300827951537943,
2.04531839059953127688606930646, 5.11523989274642329997540600750, 6.00677401973335996776964090322, 8.073253931645176916833077898866, 9.134727358667850419043488107619, 10.84990945397648662674519019002, 12.26614060596648848746921411889, 12.92813716251239603549115515573, 14.50236044302137135227601162819, 15.25668801881536925955942846128