Properties

Label 2-392-392.109-c1-0-21
Degree $2$
Conductor $392$
Sign $0.815 - 0.578i$
Analytic cond. $3.13013$
Root an. cond. $1.76921$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.402 − 1.35i)2-s + (0.480 + 3.19i)3-s + (−1.67 − 1.09i)4-s + (3.18 + 1.24i)5-s + (4.51 + 0.631i)6-s + (2.64 + 0.174i)7-s + (−2.15 + 1.83i)8-s + (−7.07 + 2.18i)9-s + (2.97 − 3.81i)10-s + (0.905 − 2.93i)11-s + (2.67 − 5.87i)12-s + (−4.15 + 0.947i)13-s + (1.29 − 3.50i)14-s + (−2.45 + 10.7i)15-s + (1.62 + 3.65i)16-s + (0.121 − 0.0829i)17-s + ⋯
L(s)  = 1  + (0.284 − 0.958i)2-s + (0.277 + 1.84i)3-s + (−0.838 − 0.545i)4-s + (1.42 + 0.558i)5-s + (1.84 + 0.257i)6-s + (0.997 + 0.0657i)7-s + (−0.761 + 0.648i)8-s + (−2.35 + 0.727i)9-s + (0.940 − 1.20i)10-s + (0.273 − 0.885i)11-s + (0.771 − 1.69i)12-s + (−1.15 + 0.262i)13-s + (0.346 − 0.937i)14-s + (−0.633 + 2.77i)15-s + (0.405 + 0.914i)16-s + (0.0295 − 0.0201i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 - 0.578i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $0.815 - 0.578i$
Analytic conductor: \(3.13013\)
Root analytic conductor: \(1.76921\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{392} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 392,\ (\ :1/2),\ 0.815 - 0.578i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.86252 + 0.593309i\)
\(L(\frac12)\) \(\approx\) \(1.86252 + 0.593309i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.402 + 1.35i)T \)
7 \( 1 + (-2.64 - 0.174i)T \)
good3 \( 1 + (-0.480 - 3.19i)T + (-2.86 + 0.884i)T^{2} \)
5 \( 1 + (-3.18 - 1.24i)T + (3.66 + 3.40i)T^{2} \)
11 \( 1 + (-0.905 + 2.93i)T + (-9.08 - 6.19i)T^{2} \)
13 \( 1 + (4.15 - 0.947i)T + (11.7 - 5.64i)T^{2} \)
17 \( 1 + (-0.121 + 0.0829i)T + (6.21 - 15.8i)T^{2} \)
19 \( 1 + (-1.42 + 0.822i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.949 + 0.647i)T + (8.40 + 21.4i)T^{2} \)
29 \( 1 + (1.72 - 3.57i)T + (-18.0 - 22.6i)T^{2} \)
31 \( 1 + (-3.54 + 6.14i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-6.09 + 0.456i)T + (36.5 - 5.51i)T^{2} \)
41 \( 1 + (1.33 + 1.67i)T + (-9.12 + 39.9i)T^{2} \)
43 \( 1 + (0.298 + 0.237i)T + (9.56 + 41.9i)T^{2} \)
47 \( 1 + (2.35 - 2.18i)T + (3.51 - 46.8i)T^{2} \)
53 \( 1 + (11.4 + 0.856i)T + (52.4 + 7.89i)T^{2} \)
59 \( 1 + (-13.6 + 5.35i)T + (43.2 - 40.1i)T^{2} \)
61 \( 1 + (6.74 - 0.505i)T + (60.3 - 9.09i)T^{2} \)
67 \( 1 + (13.1 + 7.59i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-4.09 + 1.97i)T + (44.2 - 55.5i)T^{2} \)
73 \( 1 + (1.25 + 1.16i)T + (5.45 + 72.7i)T^{2} \)
79 \( 1 + (-1.61 - 2.79i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-6.80 - 1.55i)T + (74.7 + 36.0i)T^{2} \)
89 \( 1 + (-10.9 + 3.37i)T + (73.5 - 50.1i)T^{2} \)
97 \( 1 + 9.85T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05762974592628346044770032229, −10.53715387653674936545962266132, −9.591651252244837697969359868555, −9.344749675927896309029238729738, −8.201876168555891492427065256334, −6.02746556183706217092536958721, −5.21555595089585453534622226206, −4.45839421119215563708551480071, −3.16109963640075008631632142206, −2.21128776897266912060712035314, 1.38091333638967962532176598908, 2.50743552895557740379051596355, 4.80395765844175257538223393295, 5.64781219854679860882443068708, 6.55599901876467327898959815460, 7.43909728611863309588818850758, 8.088613632520846856752654934929, 9.052493769025063557860941346697, 9.930542784652601790923437363673, 11.82567935980705644266102258535

Graph of the $Z$-function along the critical line