L(s) = 1 | + (0.152 − 0.263i)3-s + (17.7 + 30.7i)5-s + (121. + 210. i)9-s + (−282. + 490. i)11-s − 983.·13-s + 10.8·15-s + (100. − 173. i)17-s + (414. + 717. i)19-s + (−2.21e3 − 3.84e3i)23-s + (931. − 1.61e3i)25-s + 147.·27-s − 3.71e3·29-s + (496. − 859. i)31-s + (86.0 + 149. i)33-s + (4.17e3 + 7.23e3i)37-s + ⋯ |
L(s) = 1 | + (0.00975 − 0.0168i)3-s + (0.317 + 0.550i)5-s + (0.499 + 0.865i)9-s + (−0.704 + 1.22i)11-s − 1.61·13-s + 0.0123·15-s + (0.0839 − 0.145i)17-s + (0.263 + 0.456i)19-s + (−0.874 − 1.51i)23-s + (0.298 − 0.516i)25-s + 0.0390·27-s − 0.820·29-s + (0.0927 − 0.160i)31-s + (0.0137 + 0.0238i)33-s + (0.501 + 0.869i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.152 + 0.263i)T + (-121.5 - 210. i)T^{2} \) |
| 5 | \( 1 + (-17.7 - 30.7i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (282. - 490. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + 983.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-100. + 173. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-414. - 717. i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (2.21e3 + 3.84e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 3.71e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-496. + 859. i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-4.17e3 - 7.23e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.34e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 298.T + 1.47e8T^{2} \) |
| 47 | \( 1 + (9.36e3 + 1.62e4i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (8.01e3 - 1.38e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-6.37e3 + 1.10e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (1.74e4 + 3.02e4i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (5.98e3 - 1.03e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 1.29e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-4.05e4 + 7.03e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (2.34e4 + 4.07e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 1.11e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + (1.73e4 + 3.00e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 9.26e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12064830872323697287756886564, −9.597116996931064262514164635335, −7.982408227232130310704255566841, −7.44109059536326093038781145247, −6.46510147920952946613431609274, −5.09779449583118466998025850919, −4.42141620430074793555735785341, −2.62133778559582340435954109874, −2.00714467699451488098206118407, 0,
1.19834042302131322409420821547, 2.67044253719599544785652232097, 3.87288310636933518219682857331, 5.15993066550952085231584634587, 5.88263983980064330325599409549, 7.20320799779790757994912182930, 7.987753568825606354849972322491, 9.323119917223335594406326369383, 9.600368967244759869663738684843