Properties

Label 2-392-7.4-c5-0-38
Degree 22
Conductor 392392
Sign 0.701+0.712i-0.701 + 0.712i
Analytic cond. 62.870462.8704
Root an. cond. 7.929087.92908
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.152 − 0.263i)3-s + (17.7 + 30.7i)5-s + (121. + 210. i)9-s + (−282. + 490. i)11-s − 983.·13-s + 10.8·15-s + (100. − 173. i)17-s + (414. + 717. i)19-s + (−2.21e3 − 3.84e3i)23-s + (931. − 1.61e3i)25-s + 147.·27-s − 3.71e3·29-s + (496. − 859. i)31-s + (86.0 + 149. i)33-s + (4.17e3 + 7.23e3i)37-s + ⋯
L(s)  = 1  + (0.00975 − 0.0168i)3-s + (0.317 + 0.550i)5-s + (0.499 + 0.865i)9-s + (−0.704 + 1.22i)11-s − 1.61·13-s + 0.0123·15-s + (0.0839 − 0.145i)17-s + (0.263 + 0.456i)19-s + (−0.874 − 1.51i)23-s + (0.298 − 0.516i)25-s + 0.0390·27-s − 0.820·29-s + (0.0927 − 0.160i)31-s + (0.0137 + 0.0238i)33-s + (0.501 + 0.869i)37-s + ⋯

Functional equation

Λ(s)=(392s/2ΓC(s)L(s)=((0.701+0.712i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(392s/2ΓC(s+5/2)L(s)=((0.701+0.712i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 392392    =    23722^{3} \cdot 7^{2}
Sign: 0.701+0.712i-0.701 + 0.712i
Analytic conductor: 62.870462.8704
Root analytic conductor: 7.929087.92908
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ392(361,)\chi_{392} (361, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 11
Selberg data: (2, 392, ( :5/2), 0.701+0.712i)(2,\ 392,\ (\ :5/2),\ -0.701 + 0.712i)

Particular Values

L(3)L(3) == 00
L(12)L(\frac12) == 00
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
good3 1+(0.152+0.263i)T+(121.5210.i)T2 1 + (-0.152 + 0.263i)T + (-121.5 - 210. i)T^{2}
5 1+(17.730.7i)T+(1.56e3+2.70e3i)T2 1 + (-17.7 - 30.7i)T + (-1.56e3 + 2.70e3i)T^{2}
11 1+(282.490.i)T+(8.05e41.39e5i)T2 1 + (282. - 490. i)T + (-8.05e4 - 1.39e5i)T^{2}
13 1+983.T+3.71e5T2 1 + 983.T + 3.71e5T^{2}
17 1+(100.+173.i)T+(7.09e51.22e6i)T2 1 + (-100. + 173. i)T + (-7.09e5 - 1.22e6i)T^{2}
19 1+(414.717.i)T+(1.23e6+2.14e6i)T2 1 + (-414. - 717. i)T + (-1.23e6 + 2.14e6i)T^{2}
23 1+(2.21e3+3.84e3i)T+(3.21e6+5.57e6i)T2 1 + (2.21e3 + 3.84e3i)T + (-3.21e6 + 5.57e6i)T^{2}
29 1+3.71e3T+2.05e7T2 1 + 3.71e3T + 2.05e7T^{2}
31 1+(496.+859.i)T+(1.43e72.47e7i)T2 1 + (-496. + 859. i)T + (-1.43e7 - 2.47e7i)T^{2}
37 1+(4.17e37.23e3i)T+(3.46e7+6.00e7i)T2 1 + (-4.17e3 - 7.23e3i)T + (-3.46e7 + 6.00e7i)T^{2}
41 11.34e4T+1.15e8T2 1 - 1.34e4T + 1.15e8T^{2}
43 1298.T+1.47e8T2 1 - 298.T + 1.47e8T^{2}
47 1+(9.36e3+1.62e4i)T+(1.14e8+1.98e8i)T2 1 + (9.36e3 + 1.62e4i)T + (-1.14e8 + 1.98e8i)T^{2}
53 1+(8.01e31.38e4i)T+(2.09e83.62e8i)T2 1 + (8.01e3 - 1.38e4i)T + (-2.09e8 - 3.62e8i)T^{2}
59 1+(6.37e3+1.10e4i)T+(3.57e86.19e8i)T2 1 + (-6.37e3 + 1.10e4i)T + (-3.57e8 - 6.19e8i)T^{2}
61 1+(1.74e4+3.02e4i)T+(4.22e8+7.31e8i)T2 1 + (1.74e4 + 3.02e4i)T + (-4.22e8 + 7.31e8i)T^{2}
67 1+(5.98e31.03e4i)T+(6.75e81.16e9i)T2 1 + (5.98e3 - 1.03e4i)T + (-6.75e8 - 1.16e9i)T^{2}
71 1+1.29e4T+1.80e9T2 1 + 1.29e4T + 1.80e9T^{2}
73 1+(4.05e4+7.03e4i)T+(1.03e91.79e9i)T2 1 + (-4.05e4 + 7.03e4i)T + (-1.03e9 - 1.79e9i)T^{2}
79 1+(2.34e4+4.07e4i)T+(1.53e9+2.66e9i)T2 1 + (2.34e4 + 4.07e4i)T + (-1.53e9 + 2.66e9i)T^{2}
83 11.11e5T+3.93e9T2 1 - 1.11e5T + 3.93e9T^{2}
89 1+(1.73e4+3.00e4i)T+(2.79e9+4.83e9i)T2 1 + (1.73e4 + 3.00e4i)T + (-2.79e9 + 4.83e9i)T^{2}
97 1+9.26e4T+8.58e9T2 1 + 9.26e4T + 8.58e9T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.12064830872323697287756886564, −9.597116996931064262514164635335, −7.982408227232130310704255566841, −7.44109059536326093038781145247, −6.46510147920952946613431609274, −5.09779449583118466998025850919, −4.42141620430074793555735785341, −2.62133778559582340435954109874, −2.00714467699451488098206118407, 0, 1.19834042302131322409420821547, 2.67044253719599544785652232097, 3.87288310636933518219682857331, 5.15993066550952085231584634587, 5.88263983980064330325599409549, 7.20320799779790757994912182930, 7.987753568825606354849972322491, 9.323119917223335594406326369383, 9.600368967244759869663738684843

Graph of the ZZ-function along the critical line